
SecureMatch: Scalable Authentication and Key
Relegation for IoT Using Physical-Layer Techniques

Hanif Rahbari
Department of Computing Security

Rochester Institute of Technology, Rochester, NY
Email: rahbari@mail.rit.edu

Jinshan Liu and Jung-Min (Jerry) Park
Bradley Department of Electrical and Computer Engineering

Virginia Tech, Arlington, VA
Email: {jinshan, jungmin}@vt.edu

Abstract—Conventional authentication approaches, whether
based on (preconfigured) symmetric or asymmetric keys, cannot
react timely to large-scale attacks on Internet of Things (IoT) de-
vices because they need to manage (i.e., create, certify, distribute,
and revoke) long lists of keys or device identities. In particular,
existing key revocation schemes are inept at handling the extreme
scale of IoT networks. In this paper, we propose a new concept
called relegation to facilitate developing SecureMatch, a protocol
to cope with scalability while incurring minimal time and/or
space complexity. Relegation is like a fuzzy key revocation by
which only the trustworthiness level of a vulnerable but not
compromised device is reduced. Inspired by lightweight identity-
based signatures, SecureMatch uses public features of a class of
devices as their public keys to characterize and relegate all similar
devices that share a common vulnerability. Further, the proposed
protocol encodes those public features, which are often collected
from different layers of the protocol stack, into a device tag,
and then transmits this tag in the physical layer using a reliable
preamble-embedding technique. SecureMatch has low overhead
and enables an authenticator to quickly authenticate a set of
features as long as the devices exhibit the valid credentials. The
performance of tag extraction was evaluated through LabVIEW
and USRP experiments using commodity devices as transmitters.

Index Terms—Internet of Things (IoT), authentication, scalable
relegation, frame preamble, PHY-layer, USRP.

I. INTRODUCTION

It is expected that the number of connected Internet of
Things (IoT) devices worldwide will soon exceed 10 Billion;
reaching 20 Billion by 2020 [1]. The pervasive deployment of
IoT devices is expected to bring about faster move towards
smarter systems in agriculture, healthcare, transportation,
vehicle-to-vehicle (V2V) communications, etc. In particular,
Juniper Research reports that by the year of 2022, 50% of
new vehicles will be shipped with V2V hardware to enable
real-time peer-to-peer (P2P) communication between them [2].
Such a growth in the scale of emerging networks underscores
the paramount need for a massively scalable authentication
and key revocation scheme.

As the size of a network increases, it becomes increasingly
difficult to authenticate every node. In the meanwhile, it be-
comes easier for adversaries to victimize and hijack vulnerable
nodes to launch various attacks. For example, the recent
potent Distributed Denial of Service (DDoS) attack against
Internet performance management company Dyn was carried
out by a larger network of Mirai botnets made up of up

to 600, 000 compromised, but similar IoT devices [3]. This
massive attack took down hundreds of web services, including
Airbnb, Amazon, GitHub, Netflix, PayPal, Twitter, etc. To
form the IoT botnet, Mirai primarily infected certain DVRs,
IP cameras, and consumer routers [3], which obviously had
common features. In another incident, Flashpoint researchers
found more than 515, 000 Internet devices as of October 2016
that were vulnerable to the flaws they discovered [4]. Many
of such mass-produced IoT devices may not be patchable
after deployment and will remain vulnerable throughout their
lifetime [5], [6], encouraging adversaries to continue launching
similar attacks (e.g., BrickerBot attack in April 2017 [7]).
Specifically, Symantec reports that vendors are hard-coding
lifetime passwords even as easy as ‘admin’ and ‘root’ into
devices without giving users the ability to change them [8].

The legacy notion of revocation is inept at handling the
extreme scale of IoT networks because it pigeonholes a key or
vulnerable device into one of two rigid states – valid or invalid.
In contrast, we propose the fuzzy concept of relegation as the
act of reducing the trustworthiness level of a device, which
affords flexibility in how a vulnerable device’s trustworthiness
is gauged. For example, the impact of the Mirai attack could
have been mitigated effectively if the Internet gateways and
service providers were able to quickly react and perform large-
scale device relegation to quarantine the traffic coming from
other alike DVRs and cameras without revoking them.

In addition, it is not a scalable idea to rely on unique identi-
ties of thousands IoT devices, as what existing schemes offer,
to populate the blacklist of vulnerable/compromised devices
or the list of authorized ones. The maintenance cost of such
lists in the cloud, and the overhead and the delay of publishing
them to the gateways or resource-constrained IoT devices grow
significantly as more IoT devices are activated. Relying on
unique identities, such as, Android ID, MAC address, and
RF fingerprints [9], will face additional challenges. They may
not stay constant over time and can even be maliciously
tampered with. For example, MAC address randomization is
being increasingly adopted by modern operating systems (e.g.,
Android, iOS, etc.), making it almost impossible to keep track
of every device’s new MAC address. It is also insecure to
rely on RF fingerprints because an adversary can quite easily
impersonate the fingerprint of another device to launch mas-
querade attacks [10]. One may take advantage of Public Key

Infrastructure (PKI) to counter such attacks by creating and
certifying a public key for each identifier/fingerprint. However,
PKI incurs high maintenance, storage, and communication cost
in large-scale IoT networks.

In PKI, a Certificate Authority (CA) is often in charge of
managing the public keys. It implies extra transmissions to
or from the CA to share a node’s bundle of credentials with
other network entities. It also requires either storing at each
device the public keys of all the potential peers, or a ubiquitous
connection to the CA to acquire and verify a public key, which
is not always possible (e.g., when peer vehicles in V2V are
not in the transmission range of a Road Side Unit (RSU)).

Identity-based signature (IBS) [11] is an alternative public-
key scheme that uses a device’s public identity as its public
key. IBS is certificate-free and has lower overhead than PKI
because there is no need to rely on CA to acquire public keys
and their certificates. So it also offers good support for P2P
communications. However, IBS has a limitation that there is
no method to efficiently revoke the keys of a large number
of vulnerable devices in large-scale IoT networks, a critical
performance bottleneck. This is also the case in the recently
proposed AoT protocol [12] that uses IBS for a low-overhead
authentication and attribute-based access control for IoT.

In this paper, we take advantage of a lightweight (i.e.,
pairing-free) IBS to develop an efficient and massively scalable
authentication and key relegation scheme, called Feature-
Based Authentication (FBA). We argue that relegation is better
than revocation when dealing with thousands of cheap IoT
devices because it does not forcefully revoke or fully authorize
vulnerable but not compromised ones. FBA is different from
IBS in the sense that it uses common features of the devices
rather than their distinct identities to distinguish vulnerable de-
vices of the same type and reduce the key relegation overhead.
In other words, rather than verifying whether a certain identity
is vulnerable, we check whether the device belongs to a class
of thousands of vulnerable devices; making FBA a scalable
authentication scheme. (It can still be used if a class contains a
single device.) We then propose SecureMatch protocol, which
employs FBA to authenticate or relegate devices based on a
plurality of their public and perhaps common features.

Our selected set of features includes hardware or physical
(PHY) layer features, brand, type, operating system, wireless
protocol, etc. Such features are distributed across multiple
layers, making it difficult to collect and authenticate them all
at the same layer. In fact, an authenticator (the entity that
is trying to classify and authenticate a device) even may not
have the permission (e.g., READ_PHONE_STATE permission
in Android [13]) or a compatible application-layer protocol to
acquire certain features. To account for this challenge, a device
in SecureMatch embeds a digest of its features, called the tag,
in the PHY layer and sends it to the authenticator so as to
facilitate authentication. As a proof of concept, we leverage the
preamble-embedding technique in [14] to embed this tag (and
perhaps its signature) in the frame preamble of the WiFi-based
systems, enabling the receiver to instantly extract the tag. The
technique in [14] also maintains backward compatibility with

legacy devices and so can easily be integrated into existing
IoT networks.

The main contributions of the paper are as follows:
• We propose SecureMatch protocol, which can (1) scale

with the network size by distinguishing and relegating
vulnerable devices based on their common features and
(2) verify the authenticity of those features combined us-
ing lightweight FBA. The achieved scalability is in terms
of storage, processing, and communication complexity.

• By transmitting the tag, a digest of carefully selected de-
vice features, using the frame preamble of WiFi systems,
SecureMatch is able to facilitate and speed up the feature-
based authentication by not going to upper layers.

• As a proof of concept, we implemented the tag extraction
mechanism using USRP and commodity WiFi devices to
verify the feasibility and efficiency of SecureMatch.

Paper organization– In Section II, we discuss the limi-
tations of existing authentication schemes for IoT. We then
present our adversary and system model in Section III and
provide a high-level overview of the proposed SecureMatch
scheme in Section IV. After that, we describe how to generate
the tags based on devices’ features in Section V. Details about
our proposed FBA will be provided in Section VI along with a
summary of the advantages of our scheme over existing ones.
How to transmit tags in WiFi preamble and the corresponding
experiment results will be shown in Section VII, before we
conclude the paper in Section VIII.

II. EXISTING SCHEMES AND THEIR LIMITATIONS

Various authentication schemes have been proposed in the
literature, some of which have already been implemented
in real wireless systems. In the following, we discuss why
such schemes do not adequately satisfy the requirements of
emerging massive IoT networks.

Device identification. Several device identification schemes
have been proposed (e.g., [9], [15], [16]) where identification
is considered as a means for authentication. An authenticator
needs to extract the supposedly unique features of a device
(i.e., its fingerprint) to identify it. The performance of such
schemes depends on how accurate a single device is identified
among several known devices. That is, a classifier is trained
using the samples previously extracted from the set of known
devices [15]. It then exploits the distance between the (possibly
inaccurate) extracted features of a device and the recorded
features of the known devices for identification. For example,
Brik et al. in [9] use normalized Euclidean distance and the
authors in [16] compute a weighted combination of different
features to measure the distance.

However, if underlying features are from PHY layer, estima-
tion errors and automatic variations of these features over time
(due to temperature and aging) may degrade the identification
performance. If an estimated fingerprint of a device does
not match its prerecorded fingerprint, it will give rise to the
identification error rate. Even recent identification schemes,
such as [16], fail to achieve a high success rate, mainly because
of this fundamental limitation. They perform sufficiently well

only if the authenticator uses calibrated, high-end RF equip-
ment (e.g., vector signal analyzer) for estimations. In contrast,
our proposed approach does not depend on such equipment to
meet acceptable performance requirements. This is compatible
with the specifications of a typical IoT device, which is not
equipped with high-end RF.

In addition, these schemes assume that the devices are
honest and tamper-proof, i.e., the fingerprint of a device is not
maliciously modified by an adversary. However, unless PUFs
(Physically Unclonable Functions) are used, this assumption
may not always hold, as shown in [10], and they need
additional mechanisms to verify the authenticity of extracted
features. The recent work by Guo et al. [17] proposed using
Mahalanobis distance in a public-key encryption scheme to
prevent spoofing biometric features for decrypting a message.
However, their scheme relies on pairing operations, which are
very expensive in resource-constrained IoT devices. It also
requires storing multiple keys per device and transmitting
several ciphertexts between the two parties so as to facilitate
encryption (it is not a signature scheme). Furthermore, no key
revocation protocol is discussed in this paper.

Device-type identification. Miettinen et al. [18] recently
proposed a technique to identify the type of a WiFi device
(rather than its unique fingerprint) in a small IoT network
to enforce mitigation measures for those devices that have
security vulnerabilities. In this technique, the access point (AP)
collects the features of a device across the protocol stack (from
link layer to application layer) and then identifies its type using
machine learning-based classification. However, this technique
enables only the AP to identify or authenticate a device. A
device in this scheme has to obtain device-specific credentials
from the AP to encrypt its traffic to the AP. Although relying
on unique keys will curb the ability of a compromised device
to eavesdrop on the traffic of other devices, it prevents a device
from decrypting the traffic of another device and extracting its
features. Hence, this architecture cannot be deployed in P2P
scenarios, such as V2V. Furthermore, the authors assume that
the devices are honest w.r.t. their features (i.e., they may have
vulnerabilities but have not been compromised) when they
obtain the credentials. In other words, they do not consider
adversaries that attempt to carry out masquerade attacks by
placing fraudulent “cloned” devices in a network.

IoT-specific authentication schemes. As an IoT device
is usually miniaturized and constrained in resources, and so
cannot perform sophisticated cryptographic operations that
are common in more capable devices, various lightweight
authentication schemes have been developed for IoT. The
Constrained Application Protocol (CoAP) defined in RFC
7252 [19] is one of these schemes that defines authentication
modes at the application layer based on pre-shared symmetric
or asymmetric keys [20]. Although lightweight, CoAP and
other similar schemes, such as, MQTT [21], are implemented
at upper-layers of the protocol stack and so are oblivious to the
hardware, PHY-layer, and MAC layer features. As discussed
above, in many cases a combination of features from different
layers is used to authenticate a device.

Key distribution and revocation are other limitations of these
schemes. For example, CoAP supports pre-shared symmetric
key mode. With billions of IoT devices, storing and using
symmetric keys is unscalable. Although asymmetric key mode
in CoAP can mitigate the storage issue, distributing, updating,
or revoking them by the CA will be costly in large-scale IoT
networks. AoT protocol [12] alleviates the key distribution
problem by using IBS, but for revocation it just waits for the
expiration of a compromised key, leaving it valid until then.

III. SYSTEM AND ADVERSARY MODEL

We consider two network setups: (1) a typical IoT network
in homes and offices, where many devices are connected to
one of multiple wireless gateway routers that are managed by
a Trusted Third Party (TTP), (2) a V2V network where the
vehicles have intermittent connection to RSUs or LTE towers
that are managed by a TTP. The TTP is Internet-enabled and
is being updated with the common features of vulnerable or
blacklisted devices, once detected. In the following, we assume
a network consists of an authenticator, a supplicant, the TTP,
and an adversary. The authenticator can be the same device
that will eventually receive the supplicant’s message. But it can
also be a intrusion detector or a blind receiver [22], who is not
the intended receiver of the supplicant’s message. In the later
case, the detector only concerns about whether a certain IoT
device is legitimate, and do not need to exchange messages
with it. We assume that the devices use the PHY-layer of WiFi.

We also assume that the TTP can obtain a device’s true
features as long as the device is physically accessible. For
example, if the human user manually resets the device to its
factory settings, then the TTP can measure its true features
(provided that the firmware is tamper-proof). Once an IoT
device joins the network, the TTP obtains its features and
determines whether or not they characterize a vulnerable
device. The TTP conveys the public master key and a private
key to a device only once when it joins the network (and its
authenticity is verified by the TTP).

The adversary (or a compromised device) can bypass the
firewall and masquerade any authentic device, and can over-
hear the communications between the authenticator and the
supplicant, but not the communications to or from the TTP.
Different from existing authentication schemes, we further
assume that an adversary can take over a vulnerable device
and masquerade its features whenever they are supposed to be
acquired through a wireless connection. The adversary’s goal
is to exploit a vulnerability in several IoT devices to generate
malicious traffic or access the network assets.

IV. SecureMatch IN A NUTSHELL

We now introduce our SecureMatch protocol at high level.
The details will be discussed in the subsequent sections.

When a new IoT device wants to join a network, it needs
to first register with the TTP. The TTP is involved only in
the registration phase, and not in the actual authentication
protocol. It generates and assigns a tag based on the new
device features. To extract the features, the TTP may use

Supplicant

① Send tag

tag is embedded in multiple preambles (at PHY layer)

②After receiving the tag:
Check whether it indicates a
vulnerable device.

④After receiving the payload:
Verify whether the signature
and the tag are valid.

Authenticator

PayloadPreamble

③ Send message and signature

When signature is generated based on both tag
and message, it must be sent in the payload

X
O

R

Fig. 1. The four main steps for authentication in SecureMatch.

tcpdump or other common feature extraction techniques.
The tag will be used as the device’s public key and will
be transmitted in the preambles of a series of back-to-back
frames. Next, the TTP will use its master secret key to generate
a unique private key corresponding to this tag. Note that except
TTP, no other user has the ability to generate the private keys.

Each time a class of vulnerable devices is published, the
TTP will broadcast the common features that characterize per-
haps thousands of such devices. Each authenticator maintains a
Feature Relegation List (FRL) to store these common features.

When a supplicant wants to send a message, the Secure-
Match protocol outlines the following steps (see Fig. 1):

1) The supplicant slices and embeds its tag in the preambles
of a sequence of very short packets (one slice in each
preamble) to initiate the process at the authenticator. The
rationale behind transmitting the tag at the PHY-layer is
its better speed and practicality (see Section VII).

2) Upon receiving those packets and without decoding their
payload, the authenticator quickly extracts the tag and
checks whether it contains the features of a vulnerable de-
vice. If it is a match, the authenticator will quarantine the
subsequent packets of that supplicant, relegate its key, and
report this incident to the gateway for further instructions.
(The trustworthiness level to which the device is relegated
can depend on the application.) Otherwise, it will wait for
the subsequent packet(s) to check the authenticity of the
tag against masquerade attacks (see Section VI).

3) The supplicant will transmit in the frame payload a
message as well as a signature (which is generated based
on both tag and the message) to the authenticator. The
preamble of this frame contains the XOR of tag slices. In
the occasions when the authenticator only wants to verify
the supplicant’s tag and does not intend to receive its
message, the supplicant may instead embed the signature
of the tag in preambles; expediting the overall process.

4) Once the remaining frames are received, the authenticator
will extract and verify the signature.

Our SecureMatch scheme has the following properties:
• The authenticator obtains the supplicant’s public key (the

tag) directly from the supplicant itself. There is no need

to query a third party for the supplicant’s public key
or its certificate. As a byproduct, it can support fast
authentication in P2P communications because the TTP
does not need to be involved during the process.

• The authenticator can detect if the tag of a compromised
supplicant has been manipulated to evade from being
characterized as vulnerable or compromised. Its authen-
ticity is verified through verifying its signature. A tag is
authentic only if it is consistent with its associated private
key and the actual features. The private key is based on
true features and can be generated only by the TTP.

• A class of vulnerable devices can be efficiently relegated
without needing to retrieve a potentially long list of their
identities. With relegation, the gateway puts such de-
vices under surveillance or extra protection (e.g., firewall,
DMZ) instead of fully revoking access to them.

V. DEVICE CLASSIFICATION USING tag

In this section, we explain the generation of devices’ tags in
SecureMatch as a means to effectively represent their features.
A tag is composed of the following two main parts:

1) Common features: The first part represents features that
may be common in a class of IoT devices, like protocol
version, operating system, brand, etc. These features can
be used to efficiently identify large numbers of vulnerable
or compromised devices. Each time a certain type (class)
of devices is characterized as vulnerable, authenticators
only need to verify whether a supplicant’s features would
classify it as a member of that class.

2) Unique features: This part of the tag is primarily used
to help different IoT devices that have the same common
features get distinct private keys from the TTP. It can also
be used to authenticate a single device.

We acknowledge that in our FBA scheme, the length of tag
can be longer than an identity in traditional IBS. In traditional
IBS, as long as a feature is unique to a device, it can be
used as tag. In other words, the unique features part of the
tag can be sufficient for IBS. However, the longer length of
tag is not significant, especially with respect to to the resulting
overhead reduction in relegating keys of compromised devices
in existing protocols. We will discuss the rough size of tag in
this section, and compare the communication and computation
complexity for different key revocation methods in section VI.

A. IoT Device Classification

Classification of IoT devices plays a crucial role in Secure-
Match. If we classify IoT devices into several classes of small
sizes, the size of the FRL can grow quickly because each time
a security threat may impact multiple classes of devices. The
most extreme case is when each device forms a single class,
and our scheme degenerates to the conventional Certificate
Revocation List (CRL) schemes with a list of all compromised
keys. On the contrary, if we classify IoT devices too broadly,
each time vulnerable features are published, keys of a large
number of safe devices may also be relegated, giving rise to
false dismissal rate.

Common Features Unique Features

CFO I Component Q Component

IQ Origin Offset

Brand and Type Platform and OS Network Protocols

Fig. 2. Structure of a tag. All features are coded as bit strings and
concatenated sequentially. Common features are used for classification and
relegation, and unique features are used for generating unique private keys.

The encoding of the features into the tag in SecureMatch is
similar to header generation in OSI layers. It first uses several
bits to represent the first common feature, next few bits to
represent the second one, and so on, as shown in Fig. 2. Such a
linear coding may not be optimal because it does not minimize
(compress) the number of coded bits, but is very light and
straightforward for the authenticator to read all features. There
is no need for complicated decoding and mapping scheme. It
also makes it easy for a TTP to modify the coding scheme if
new features are added, or outdated features are removed.

B. Common Features

We leverage the findings of a recent IoT developer sur-
vey [23] as well as other studies on infected IoT devices (e.g.,
[3], [24], [25]) to compile a list of common features that
identify vulnerable devices. In the following, the number in
each bracket represents how many types are reported in [23]
or approximated based on our observations.

Brand and type– As discussed in [3], [24], [25], a security
flaw can be common among the devices with the same brand
and similar functionalities. Because it is impractical to exhaust
the list of all possible brands and types, we first consider the
popular ones that are found in various IoT networks and then
reserve a few additional placeholders; enabling the TTP to add
more brands/types for a given network, if needed.

• Brand (64): Amazon, Samsung, Dahua, Philips, etc.
• Type (128): camera, DVR, router, lamp, thermostat, etc.
• Application domain (22): smart home, industrial automa-

tion, healthcare, agriculture, etc.
• Function (10): sensor, actuator, edge node, hub, etc.
Platform and operating system (OS)– A virus or hacking

technique often targets a particular OS or cloud service [26].
For example, a Windows virus will not usually infect Linux.

• OS (100): Linux, Windows, FreeRTOS, etc. For open-
source OSs, we take the distribution into account. For
example, Linux has distributions Raspbian, Ubuntu, etc.
For commercial OSs, we take the version into account,
like Windows 7, 8, 10, etc. From [23], the number of
popular OS distributions and versions is less than 100.

• Cloud service (11 [3]): Amazon AWS, Microsoft Azure,
IBM Bluemix, Google cloud platform, etc.

• Hardware architecture (15): Atmel [24], ARM Cortex
M7, Intel X86-64, 16-bit MCU, etc.

Network protocols– Several vulnerabilities have been dis-
covered in wireless protocols used by IoT devices [24], [25].

Similarly, vulnerable devices can be identified based on their
protocol banners (e.g., in Mirai botnet [3]).

• Application layer protocol (8): FTP, SSH, Telnet, etc.
• Messaging protocol (11): MQTT, XMPP, CoAP, etc.
• Wireless protocol and version (32): ZigBee [24], Z-Wave,

802.11n/ac/ad/ax, Bluetooth v4.0 (BLE), etc.

C. Unique Features

To facilitate generating unique private key for each device,
we look for features that are time-invariant, or at least remain
the same for a reasonably long time. One may consider MAC
address, IP address, Android ID, etc. as unique features. How-
ever, as discussed earlier, even MAC address may randomly
change over time in new operating systems. Hence, we seek
other features that are inherent to devices themselves.

As discussed in [15], several PHY-layer features remain
constant, and can be used as device fingerprints. Even for
distinct devices that come from the same manufacture, those
features are often different [16]. In our scheme, we select the
following two easily measured features to be the unique ones:

• Carrier Frequency Offset (CFO)– The difference be-
tween the operating frequency of the authenticator and the
supplicant. CFO is specific to a pair of devices, and may
change if a different pair is considered. So in our scheme,
we let the supplicant compute its CFO with respect to
the TTP as the global reference and add it to its tag. The
authenticator can acquire the supplicant’s CFO using its
CFOs to the supplicant and to the TTP. The latter can be
measured and stored once during the registration phase.

• I/Q origin offset– The offset of the origin of the received
symbols compared to the ideal I/Q plane, expressed in I
and Q components.

Theoretically, no two devices should have exactly the same
PHY-layer features. But in practice, we need to use discrete
finite values to represent those continuous values (i.e., encode
PHY-layer features to a binary sequence). As a result, several
devices may obtain the same tag after quantization. We add
a few padding bits for better classification, in case multiple
devices end up having exactly the same tag.

D. Size of the tag

Since a tag needs to be embedded in multiple preambles
(one preamble per frame), its size will influence how many
frames to be transmitted, and hence, the authentication delay.
Note that in practice, the features set can be network-specific,
so the size of tags will also be network-specific.

To approximate the size of a tag, we first consider the
number of possible values for the common features (see
Section V-A).

�log2 64�+ �log2 128�+ · · ·+ �log2 32� = 49 bits. (1)

in which �x� means the smallest integer greater or equal to x.
In the unique features, CFO can often be estimated fairly

accurately [16]. But to account for its estimation errors, we
heuristically assign no more than 10 bits to represent it. I/Q

origin offset is usually estimated less accurately, so we assign
5 bits for both I and Q components. We also consider another
5 random bits for padding, in case two or more devices end
up having the same tag. So the common and unique features
combined make the whole tag be approximately 74 bits.

VI. FEATURE-BASED AUTHENTICATION (FBA)

The most important component of SecureMatch is FBA,
which is basically the same as IBS but with the tag used as
the identity to make key relegation scalable. In this section,
we first discuss the main advantage of IBS as well as the lim-
itations of the existing key revocation protocols when IBS is
used. Then we introduce FBA, which inherits the core structure
of IBS schemes. We also show the advantages of SecureMatch
by comparing communication and computation complexity in
the authentication and relegation process, as well as the storage
to maintain the FRL, with existing revocation protocols.

A. Motivation

IBS eliminates the necessity for querying the CA (or TTP)
to verify the authenticity of the public keys by having a public
identity act as the device’s explicit public key, obviating the
need for certificates and their associated implicit public keys.
So communication overhead and computation cost are signifi-
cantly reduced if IBS is used. This property further facilitates
P2P communication because it reduces the dependency on the
TTP. In IBS, a device queries the TTP to receive a private key
based on its identity/tag once only when it joins the network.
Unlike PKI, only the TTP is able to generate private keys and
other devices cannot generate one for themselves.

Although using IBS reduces the overhead in distributing
the public keys and their certificates, key revocation becomes
challenging. It is challenging because of not querying the
TTP about the validity of a public key in each authentication
process. Instead, the TTP has to either (a) change the master
public key and reissue private keys for all the devices, or (b)
notify all the users about the identity/tag of the compromised
devices. Obviously, changing the master key means rebuilding
the whole network, which is not practical. Hence in practice,
the other approach is more commonly used.

There are two widely used protocols to make users aware
of compromised devices, namely CRL and Online Certificate
Status Protocol (OCSP) [27]. Several existing protocols, such
as CoAP [19], use CRL. It is a list of revoked devices that have
been issued and subsequently revoked by the TTP. Each time
a device is revoked, it needs to be broadcasted and all devices
will have to verify the authenticity of the new list and update
their CRLs. Hence, every CRL may need to be updated once
for each compromised device, which burdens network devices
and bandwidth with non-production traffic. On the other hand,
the number of compromised devices can be very large in large-
scale IoT networks. Because of the limited storage of an IoT
device, it may not be able to maintain such a large CRL.

OCSP addresses the shortcomings of CRL by having the au-
thenticator query the TTP (or OCSP server) to check whether
a supplicant has a valid key corresponding to its tag. The

TTP responds with a signed message. So in OCSP, there is no
need to maintain a list of compromised devices but the TTP
involvement is necessary, preventing P2P communications.
Furthermore, in terms of communication and computation
complexity, the authenticator needs to receive and verify two
signatures: one from the supplicant, and one from the TTP.

So CRL is impractical for key revocation in large-size
IoT networks, while OCSP is expensive and cannot support
P2P communications. To overcome these shortcomings, we
propose the concept of FBA. Different from IBS, the features
(coded into the tag) are used in FBA to check whether the
supplicant belongs to a class of vulnerable devices. Because a
vulnerable device that has those features may not have been
compromised yet, we use relegation instead of revocation to
allow that device continue to operate but under surveillance.
The FRL stores only the common features of the vulnerable
devices, significantly reducing the storage requirements be-
cause the number of common features is far less than the
number of devices. Each time a class of vulnerable devices
is detected, the TTP publishes their common features and all
devices update their FRLs.

Fig. 3 illustrates the key revocation/relegation procedures of
CRL, OCSP, and FRL. A comparison among these protocols
as well as AoT protocol [12] is shown in Table I. AoT suggests
renewing devices’ private keys periodically, so it cannot take
actions timely in case devices or keys are compromised, unless
it uses CRL or OCSP. For a more concise notation, let NC de-
note the number of compromised devices and NF the number
of classes of compromised devices. It is reasonable to assume
NF � NC in practical situations (e.g., only nine vendors were
responsible for 500, 000 Mirai-infected devices [3]).

B. Framework of Proposed FBA

Other than replacing identity with tag, FBA has the same
framework as IBS. In FBA, the supplicant sends its tag, mes-
sage and the signature to the authenticator. The authenticator
first verifies the validity of the tag, then checks whether the
signature is valid based on the tag and the received message.

For IoT devices with limited computational and memory
resources, the underlying cryptography scheme should be
lightweight. Because of the very high complexity in pairing
operations, it is highly preferred to employ a scheme which
does not use pairing. Our proposed FBA can employ any
of the existing pairing-free IBS schemes, such as [28], [29],
[30], [31]. The first ECC (Elliptic Curve Cryptosystem)-based
IBS scheme, called BNN-IBS, was introduced in the first
version of [28]. To send an ECC point Q = (x, y), a sender
usually only needs to send the x−component and the receiver
is expected to compute y−component by solving a quadric
equation y2 = x2+ax+b. However, solving this equation may
require intensive modulo exponential operations, which can be
time consuming for limited-resource IoT devices. Instead, the
authors in [29] suggest sending both coordinates from suppli-
cant to authenticator to reduce the overall complexity. They
also propose a modified version of BNN-IBS, called vBNN-
IBS, which reduces the signature size if both coordinates are

AuthenticatorSupplicant

① tag and signature

② Check whether
the tag (identity) is

in the list

TTP

Certificate
Revocation
List (CRL)

(a) Key revocation using CRL. It maintains the
list of all compromised (and vulnerable) devices,
which can be very large.

Authenticator

TTP

① tag and signature

Supplicant

(b) Key revocation using OCSP. The TTP is
involved during authentication, so no storage
is needed to store the list of revoked devices.

AuthenticatorSupplicant

TTP

Feature
Relegation
List (FRL)

① tag and signature
② Extract features

from tag

Check whether it has
features in the list

(c) Key relegation using FRL (SecureMatch). It
stores only the common features of vulnerable
devices, so will not be large.

Fig. 3. Illustration of three key revocation/relegation schemes.

TABLE I
COMPARISON OF THREE DIFFERENT KEY REVOCATION/RELEGATION SCHEMES.

Scheme Signature verification overhead Storage of revocation list Overhead in updating revocation list Support P2P
CRL One from supplicant O(NC) O(NC) Yes
OCSP [27] One from supplicant+One from TTP No such list No such list No
AoT [12] One from supplicant Should either use CRL or OCSP to detect compromised devices/keys timely
FRL (SecureMatch) One signature from supplicant O(NF) O(NF) Yes

transmitted. So we adopt vBNN-IBS as our underlying IBS
scheme, which is composed of the following four probabilistic
polynomial algorithms (G, E ,S,V):

• Parameter generation algorithm G, which takes as input
the security parameter η, and outputs the master public
key mpk and master secret key msk. Given parameter η,
G takes the following steps:
– Specify E(Fq), which is the group of points formed

by an elliptic curve E over a prime finite field Fq .
– Specify a prime p in range [2η, 2η+1] with p2 not

divided by the order of E(Fq).
– Choose a base point P in the elliptic curve of order p.
– Select master secret key x at random from Zp, and

compute master public key P0 = xP .
– Choose two cryptographic hash functions H1 :

{0, 1}∗ → Zp and H2 : {0, 1}∗ → Zp.
– Publish (mpk, msk)= ((E(Fq), P, p, P0, H1, H2), x)

• Key-generation algorithm E , which takes input msk and
mpk, and for each tag, it outputs a private key sktag
corresponding to the user with this tag. It first picks a
random number r uniformly in Zq , and computes R =
rP . It then uses master secret key x to compute s = r+
H1(tag�R) · x, where � denotes concatenation operator.
The private key for this tag is set to be sktag = (R, s).

• The signing algorithm S, which takes as input parameters
mpk, sktag, and a message m, then outputs signature σm.
It selects a random number y uniformly in Zq , and com-
putes Y = yP . Then it computes h = H2(tag�m�R�Y)
and z = y + hs. The supplicant’s signature σm for
message m is the tuple (R, h, z).

• The verification algorithm V , which takes as input param-
eters mpk, signature σm, message m and the supplicant’s
tag, and determines whether σm is a valid signature of
m. It proceeds as follows. It outputs whether or not
the equation h = H2(tag�m�R�(zP − h(R + cP0)))

holds, where c = H1(tag�R). If this equation holds, the
signature (or identity) can be verified. Otherwise, simply
reject this authentication.

Depending on IoT devices’ resources, we can choose other
IBS schemes. The IBS scheme in [30] combines symmetric
and asymmetric cryptography, and tends to reduce compu-
tational complexity. But in order for authenticator to au-
thenticate supplicant, the supplicant also needs to know the
authenticator’s public key, since the signature is generated by
using both public keys. In addition, unlike traditional IBS
which uses devices’ tags as public keys, this scheme needs
to generate public keys based on tags. Consequently, there is
one additional step to verify the validity of public keys.

If the authenticator just wants to authenticate the tag itself,
like an intrusion detector, the actual message m is not impor-
tant. Since the tag and its signature are embedded in preamble
in this scenario, we can simply use a pre-defined bit stream as
message m, or just leave m empty, avoiding to send m for each
authentication and reducing the communication complexity.
Note that it is robust against replay attack, because a new
random number y in signing algorithm S is generated each
time. If the authenticator needs to authenticate the integrity
of message m, only the tag is embedded in preamble. The
message is still sent via the frame payload.

C. Signature Size (Communication Complexity)

As highlighted by National Institute of Standards and Tech-
nology (NIST) [32], the security against key-recovery attacks
should be at least 112 bits for IoT. So in our case, |p| (|p| is
the number of bits to represent p) and |q| should be at least
224 bits, because for a size of η bits, the general birthday
attack are expected to find collisions in 2η/2 steps. Similar
analysis can be very easily extended to other security levels.
If the authenticator has the ability to compute y-coordinate
based on x, the signature size is 2|p| + |q| + 1 = 673 bits
(the extra one bit is used for indicating it is +y or −y). If

the authenticator is not able to compute y-coordinate given x,
both coordinates should be sent, and the signature size will be
2|p|+ 2|q| = 896 bits.

VII. EMBEDDING tag IN THE PREAMBLE

Transmitting the tag (and its signature) at the PHY-layer has
two advantages. First, any authenticator can instantly check
all the features and does not need to wait for decoding and
decrypting the payload to extract upper-layer ones. Note that in
contrast to the payload of upper-layer protocols, the PHY-layer
frame is never encrypted. Additionally, an authenticator may
not always have the permission (e.g., READ_PHONE_STATE
permission in Android [13]) to access certain system features.
Second, a PHY-layer approach can be applied across all the
devices with the same PHY-layer protocol, irrespective of their
upper-layer protocols. That means a (blind) receiver does not
need to know which transport or application layer protocol a
device uses before it can check supplicant’s features.

As a proof of concept, SecureMatch employs P-modu-
lation [14], a PHY-layer message embedding technique, to
communicate the tag and its signature (if the authenticator is
not intended to receive the payload) at the PHY-layer. It uses
the preamble of OFDM-based WiFi systems for embedding
in such a way that unaware/legacy WiFi receivers who do
not know P-modulation can operate as normal and receive the
frames transmitted by a P-modulation-enabled device. That
is, the technique is backward-compatible and does not need
to forcefully modify existing communications and networking
protocols. Hence, SecureMatch-enabled devices do not need
to form a separate network for their own and can easily be
integrated into existing IoT networks. P-modulation is also
robust to mobility because of short duration of the preamble.
Hence, it can also be adopted for V2V communications with
small coherence times.

Compared to other PHY-layer embedding techniques such
as FEAT [22], P-modulation is able to reliably embed 5 bits or
more in the preamble of each frame. FEAT scheme can embed
only 1 bit per frame. The actual embedding capacity of P-
modulation depends on the underlying WiFi standard and the
expected level of reliability, and can be higher than 5 bits per
frame. According to [14], when the device is equipped with a
single antenna (and uses IEEE 802.11a standard), it can embed
5–7 bits and match the bit-error-rate (BER) performance of
BPSK modulation scheme, irrespective of the accuracy of CFO
estimation. If the CFO estimation is accurate, it achieves BER
as low as 10−4. The embedded bit sequence can be expanded
to 8 at the expense of reduced reliability. On the other hand,
if the device uses more recent 802.11n or 802.11ac standard
for multiple-antenna systems, the capacity can be extended to
19–21 bits, depending on the expected reliability [14].

Besides the analytical performance comparisons in Table I,
in the following we evaluate the performance of the tag ex-
traction technique using a commodity WiFi NIC. The authors
in [14] used only USRPs, i.e., one USRP as the transmitter and
one as the receiver, to evaluate P-modulation in a controlled
experimentation setup (i.e., with accurate CFO estimation) and

TABLE II
COMPARISON OF THREE DIFFERENT KEY REVOCATION PROTOCOLS

Role Wireless interface model Standard
Transmitter (supplicant) Intel R�Dual Band Wireless-AC 8260 802.11ac
Receiver (authenticator) NI USRP-2922 802.11a

over the narrow bandwidth of 1MHz. In contrast, in here we
consider a WiFi NIC as the transmitter and a USRP as the
receiver to capture real WiFi transmissions over the 20MHz
bandwidth air interface (see Fig. 4). The specifications of the
devices are shown in Table II. The transmitter runs IPERF
with very short packet sizes of 8 bytes. We implement only
the demodulation component of P-modulation (with certain
modification) as we cannot modify the firmware of the NIC
to embed different bit sequences in the preamble. Hence,
the transmitted tag (the bit sequence corresponding to the
standardized preamble) is assumed to be constant and we
evaluate the BER performance of extracting this tag.

Fig. 4. Experiment setup (scenario #1).

We experiment the tag extraction under two different sce-
narios and show the results in Fig. 5. In scenario #1, we place
the devices in a storage lab environment with line-of-sight. In
scenario #2, we place the devices in an office environment with
several objects around. The tags are uncoded, i.e., no channel
coding is used to improve the robustness of the embedded tag
against channel impairments. The authors in [14] report that
if CFO estimation is erroneous when using USRPs, the BER
of any scheme, including BPSK and P-modulation, will be
severely deteriorated. The results in Fig. 5 exhibit a similar
trend as the CFO estimation is not accurate. Nevertheless, the
results also show that the BER can be as low as 0.02 when 6
bits are embedded in a preamble. That means the entire 6-bit
sequence will be correctly extracted with about 90% success
rate. This rate increases to 99.8% if only 3 bits are embedded
in each preamble. The performance can be improved if better
CFO estimation mechanisms are employed.

In SecureMatch scheme, the embedded bit sequence is the
supplicant’s tag. From Fig. 5, we see that a relatively high
reliability can be achieved when 5 bits are embedded in
each preamble. In this case, if we only embed the tag, then
� 74

5 � = 15 short packets are needed to be transmitted. If
both the tag and its related signature are to be embedded
in the preambles, then � 672+74

5 � = 150 packets are needed
when we choose to send only one coordinate of ECC pints.
Although we need to transmit several short packets in this case,
it enables devices using incompatible upper-layer protocols to

3 4 5 6 7

of embedded bits

10
-3

10
-2

10
-1

B
it

-e
rr

o
r-

ra
te

 (
B

E
R

)

Scenario 1: Lab

Scenario 2: Office

Fig. 5. BER performance of tag extraction versus different number of bits
embedded in a frame preamble. The CFO estimation is not highly accurate,
which creates a performance floor even when only 3 bits are embedded.

authenticate each other. To achieve a very high bit success
rate, it is more advisable to embed only 3 bits per frame.

Alternatively, one may employ channel coding or retrans-
mission techniques to account for lost or corrupted preambles.
In fact, the XOR of the tag slices embedded in the preamble of
the message frame can be considered for error detection and
correction to some extent. However, the design of specific and
stronger channel codes for P-modulation is beyond the scope
of this paper and is left for future work.

VIII. CONCLUSION

In this paper, we proposed SecureMatch, a scalable protocol
that is also able to support P2P authentication in large-size
IoT networks. Instead of storing the list of all compromised
devices, the devices in SecureMatch only need to save the
common features of vulnerable devices, significantly reducing
the time and space complexity. Moreover, by relegating keys
based on the class of devices (characterized by their common
features), an authenticator has the flexibility of adjusting the
trustworthiness of a vulnerable but not compromised without
necessarily revoking access to it.

As a proof of concept, we also embed a digest of the
features (the tag) in the preamble of WiFi systems. By doing
so, we are able to speed up the authentication procedure by
transmitting the tag without going to upper layer. Moreover,
it can allow devices to authenticate each other without using
the same upper-layer protocols. With USRP experiments, we
demonstrate the practicality of such PHY-layer technology
using a commodity transmitter.

ACKNOWLEDGMENT

This work was supported in part by NSF, the industry
affiliates of the Broadband Wireless Access & Applications
Center (BWAC), and the Wireless@Virginia Tech group. Any
opinions or conclusions expressed in this paper are those of
the author(s), and do not necessarily reflect the views of NSF.

REFERENCES

[1] R. van der Meulen, “Gartner says 8.4 billion connected “things” will be
in use in 2017, up 31% from 2016,” https://goo.gl/X9bUr9, Feb. 2017.

[2] Juniper Research, “Consumer connected cars–applications, telematics &
V2V 2017-2022,” https://goo.gl/9x9amg, May 2017.

[3] M. Antonakakis et al., “Understanding the Mirai botnet,” in Proc. 26th
USENIX Security Symp., Vancouver, BC, 2017, pp. 1093–1110.

[4] Z. Wikholm, “When vulnerabilities travel downstream,” https://goo.gl/
iqKasw, Oct. 2016.

[5] KrebsonSecurity, “Hacked cameras, DVRs powered today’s massive
Internet outage,” https://goo.gl/tUiDl0, Oct. 2016.

[6] T. Benson and B. Chandrasekaran, “Sounding the bell for improving
Internet (of Things) security,” in Proc. Workshop Internet of Things
Security and Privacy, Dallas, Texas, USA, 2017, pp. 77–82.

[7] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “DDoS in the IoT:
Mirai and other botnets,” Computer, vol. 50, no. 7, pp. 80–84, Jul. 2017.

[8] D. Palmer, “Is ‘admin’ password leaving your IoT device vulnerable to
cyberattacks?” https://goo.gl/Ej12MG, Apr. 2017.

[9] V. Brik, S. Banerjee, M. Gruteser, and S. Oh, “Wireless device identifi-
cation with radiometric signatures,” in Proc. 14th ACM in. conf. Mobile
Computing and Networking (MobiCom), 2008, pp. 116–127.

[10] B. Danev, H. Luecken, S. Capkun, and K. El Defrawy, “Attacks on
physical-layer identification,” in Proc. third ACM conf. Wireless network
security (WiSec), 2010, pp. 89–98.

[11] A. Shamir et al., “Identity-based cryptosystems and signature schemes,”
in Crypto, vol. 84. Springer, 1984, pp. 47–53.

[12] A. L. M. Neto et al., “AoT: Authentication and access control for
the entire IoT device life-cycle,” in Proc. 14th ACM Conf. Embedded
Network Sensor Systems (Sensys), Stanford, CA, USA, Nov. 2016.

[13] Z. Fang, W. Han, and Y. Li, “Permission based android security: Issues
and countermeasures,” Comput. & Security, vol. 43, pp. 205–218, 2014.

[14] H. Rahbari and M. Krunz, “Exploiting frame preamble waveforms to
support new physical-layer functions in OFDM-based 802.11 systems,”
IEEE Trans. Wireless Commun, vol. 16, no. 6, pp. 3775–3786, Jun. 2017.

[15] Y. Shi and M. A. Jensen, “Improved radiometric identification of
wireless devices using MIMO transmission,” IEEE Trans. Inf. Forensics
Security, vol. 6, no. 4, pp. 1346–1354, 2011.

[16] T. D. Vo-Huu, T. D. Vo-Huu, and G. Noubir, “Fingerprinting Wi-Fi
devices using software defined radio,” in Proc. 9th ACM Conf. Security
& Privacy in Wireless and Mobile Netw. (WiSec), Jul. 2016, pp. 3–14.

[17] F. Guo, W. Susilo, and Y. Mu, “Distance-based encryption: How
to embed fuzziness in biometric-based encryption,” IEEE Trans. Inf.
Forensics Security, vol. 11, no. 2, pp. 247–257, 2016.

[18] M. Miettinen et al., “IoT sentinel: Automated device-type identification
for security enforcement in IoT,” in Proc. 37th IEEE Int. conf. Dis-
tributed Computing Systems (ICDCS), Jun. 2017, pp. 2177–2184.

[19] C. B. Z. Shelby, K. Hartke, “The constrained application protocol
(CoAP),” Internet Requests for Comments, RFC 7252, Jun. 2014.

[20] J. Granjal, E. Monteiro, and J. S. Silva, “Security for the Internet of
Things: a survey of existing protocols and open research issues,” IEEE
Commun. Surveys Tuts., vol. 17, no. 3, pp. 1294–1312, 2015.

[21] A. Banks and R. Gupta, “MQTT 3.1.1, OASIS standard,” 2014, 3.1.1.,
OASIS Standard.

[22] V. Kumar, J.-M. Park, and K. Bian, “Blind transmitter authentication
for spectrum security and enforcement,” in Proc. ACM Conf. Comput.
Commun. Security (CCS), Scottsdale, Arizona, USA, 2014, pp. 787–798.

[23] Eclipse IoT Working Group and others, “IEEE, Agile-IoT EU, and IoT
council,” 2017.

[24] E. Ronen, A. Shamir, A.-O. Weingarten, and C. O’Flynn, “IoT goes
nuclear: Creating a ZigBee chain reaction,” in IEEE Symp. Security and
Privacy (SP), San Jose, CA, USA, May 2017, pp. 195–212.

[25] E. Fernandes, J. Jung, and A. Prakash, “Security analysis of emerging
smart home applications,” in IEEE Symp. Security and Privacy (SP),
2016, pp. 636–654.

[26] G. Leopold, “AWS cloud hacked by bitcoin miners,” https://goo.gl/
Q9kAMJ, Oct. 2017.

[27] S. Santesson et al., “X.509 Internet public key infrastructure online
certificate status protocol-OCSP,” Tech. Rep., 2013.

[28] M. Bellare, C. Namprempre, and G. Neven, “Security proofs for identity-
based identification and signature schemes,” J. of Cryptology, vol. 22,
no. 1, pp. 1–61, 2009.

[29] X. Cao, W. Kou, L. Dang, and B. Zhao, “IMBAS: Identity-based multi-
user broadcast authentication in wireless sensor networks,” Comput.
Commun., vol. 31, no. 4, pp. 659–667, 2008.

[30] K. T. Nguyen, N. Oualha, and M. Laurent, “Lightweight certificateless
and provably-secure signcryptosystem for the Internet of Things,” in
Proc. IEEE TrustCom/BigDataSE/ISPA, vol. 1, Helsinki, Finland, Aug.
2015, pp. 467–474.

[31] S. Chatterjee, C. Kamath, and V. Kumar, “Galindo-Garcia identity-
based signature revisited,” in Proc. Int. Conf. Information Security and
Cryptology, 2012, pp. 456–471.

[32] K. A. McKay, L. Bassham, M. S. Turan, and N. Mouha, “Report on
lightweight cryptography,” Tech. Rep., Mar. 2017, NISTIR 8114.

