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Abstract—Carrier frequency offset (CFO) arises from the in-
trinsic mismatch between the oscillators of a wireless transmitter
and the corresponding receiver, as well as their relative motion
(i.e., Doppler effect). Despite advances in CFO estimation and
tracking techniques, estimation errors are still present. Residual
CFO creates a time-varying phase error, which degrades the
decoder’s performance by increasing the symbol error rate. The
impact is particularly visible in dense constellation maps (e.g.,
high-order QAM modulation), often used in modern wireless
systems such as 5G NR, 802.11ax, and mmWave, as well as
in physical security techniques, such as modulation obfuscation
(MO). In this paper, we first derive the probability distribution
function for the residual CFO under Gaussian noise. Using this
distribution, we compute the maximume-likelihood demodulation
boundaries for OFDM signals in a non-closed form. For modu-
lation schemes with unequal-amplitude reference constellation
points (e.g., 16-QAM and higher, APSK, etc.), the “optimal”
boundaries have irregular shapes, and more importantly, they
depend on the time since the last CFO correction instance,
e.g., reception of frame preamble. To approximate the optimal
boundaries and provide a practical (real-time) demodulation
scheme, we explore machine learning techniques, specifically,
support vector machine (SVM). Our SVM approach exhibits
better accuracy and lower complexity in the test phase than other
state-of-the-art machine-learning approaches. As a case study, we
apply our CFO-aware demodulation to enhance the performance
of a MO technique. Our analytical results show a gain of up
to 3 dB over conventional demodulation schemes, which exceeds
3 dB in complete system simulations. Finally, we implement our
scheme on USRPs and experimentally corroborate our analytic
and simulation-based findings.

Index Terms—Carrier frequency offset, demodulation, support
vector machine, modulation obfuscation, USRP experiments

I. INTRODUCTION

Emerging wireless systems increasingly rely on high-order
modulation schemes to improve spectral efficiency. 5G New
Radio (NR) as well as the IEEE 802.11ax are expected to
support quadrature-amplitude modulation (QAM) of orders
as high as 1024 [2]-[4]. Millimeter-wave (mmWave) systems
are also expected to employ 64-QAM schemes [5]. Similarly,
the DVB-S2X standard for satellite TV predominantly uses
asymmetric phase-shift keying (APSK) with orders up to
256 [6]. The constellation maps of such modulation schemes
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are dense, resulting in high sensitivity to phase errors. These
errors are also critical in wireless security techniques that
obfuscate the low-order modulation scheme of the payload
by randomly embedding it into the denser constellation map
of a higher-order modulation scheme [7], [8]. Otherwise, the
leakage of the modulation order to an eavesdropper opens the
door for traffic analysis and packet classification, subsequently
enabling various types of privacy breaches and selective jam-
ming attacks [9]-[11].

A phase error (phase offset) is usually caused by imperfect
channel estimation and/or uncompensated carrier frequency
offset (CFO). CFO results from the inherent mismatch between
the operating frequencies of the transmit and receive oscilla-
tors. It may also be attributed to mobility and Doppler effect.
When the phase offset is due to CFO, it increases linearly dur-
ing frame reception. So even a small post-estimation (residual)
CFO can eventually translate into a large phase offset. Phase-
offset-induced demodulation errors increase the bit-error-rate
(BER) and may also propagate over multiple symbols if these
symbols are correlated via convolutional coding schemes, e.g.,
trellis-coded modulation (TCM) [12].

CFO estimation errors unnecessarily prevent the transmitter
(Tx) from using high-order modulation schemes. For example,
residual CFO has been shown to be detrimental to some of the
functionalities of 802.11ax (Wi-Fi) systems, including mul-
tiuser multiple-input multiple-output (MU-MIMO) [13]. High-
order modulation is also needed for modulation obfuscation
(MO) to hide the payload’s transmission rate by randomly
(and secretly) mapping its modulated symbols into a denser
constellation map. Future 5G systems are also required to
support high data rates in very high-speed vehicular environ-
ments (up to 500 km/h [14]). The resulting Doppler shift at the
received signal can create CFO of up to 2 kHz at 4.2 GHz band
(equivalent to 13% of the subcarrier spacing), which needs to
be accurately estimated to maintain the target throughput.

Most wireless devices employ at least one CFO estimation
method (e.g., [7], [15], [16]) at the start or in the middle of a
frame transmission (e.g., pilot subcarriers in IEEE 802.11n/ac
systems) to mitigate the demodulation errors of high-order
modulation schemes. However, a typical demodulator over-
looks the possibility of imperfect CFO estimation and does not
adjust its demodulation regions over time. As we show in this
paper, residual CFO has disproportional impacts on the spatial
distribution of symbols (on the constellation map) if such
symbols exhibit unequal amplitudes. The resulting asymmetry
in the spatial distribution at the receiver (Rx) has not been
previously accounted for in the demodulation process.

To illustrate, in Fig. 1 we give an example of the spatial
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(c) Symbol (—3,3) (w/ CFO)  (d) Symbols (—3,1) and (-3, 3)

(w/ CFO)

Fig. 1. Spatial probability distribution of received symbols of two transmitted
16-QAM values simulated under white Gaussian noise. Warm colors (e.g., red)
denote a higher probability density while cold colors (e.g., blue) represent a
lower probability.

distribution at the Rx under Gaussian noise for two transmitted
16-QAM values of unequal amplitudes. In Fig. 1(a), it is
assumed that there is no residual CFO and so the spatial dis-
tribution of received symbols is identical and symmetric with
respect to the nominal constellation points. Hence, a horizontal
line at equal distance from the two nominal constellation
points optimally splits the constellation map according to the
maximum-likelihood (ML) detection criterion. However, with
residual (uncompensated) CFO, the distribution of received
symbols is no longer symmetric, as shown in parts (b) and
(c) of the figure. Additionally, the amplitude of a transmitted
symbol impacts the distribution of the received symbols. For
example, received symbols that were transmitted as (—3,3)
are distributed over a wider region, compared to the lower-
amplitude symbol (—3,1). Hence, a horizontal line is no
longer the optimal boundary for the demodulation regions (see
Fig. 1(d)). Such contrast is accentuated as the difference in the
amplitudes of the constellation points increases.

In this paper, we analyze the demodulation performance of
QAM and APSK schemes under residual CFO. We compute
the ML demodulation boundaries in a non-closed form, and
use the support vector machine (SVM) approach to develop a
lightweight, adaptive, and practical demodulation technique.
The main idea behind our approach is to continuously adapt
the demodulation regions during frame reception based on the
probability distribution of the CFO-induced phase offset. Com-
pared to recent neural networks (e.g., [17], [18]) and decision-
tree-based methods (e.g., [191Y), our SVM algorithm is faster
and incurs lower storage complexity while maintaining the
BER performance of the optimal demodulation boundaries.

Recent works on residual CFO focus on studying its impact
on the system performance (e.g., [20]-[22]) or exploring
ways to reduce it (e.g., [23]). They often assume uniformly
distributed random CFO, which leads to Gaussian distributed
residual CFO. In contrast, we focus on the estimated CFO

IThe authors of [19] have already shown in their work that their method
outperforms a large number of other machine-learning methods.

(and subsequently, the residual CFO that previous techniques
do not account for). We show that the residual CFO has a non-
Gaussian distribution. The goal of our proposed lightweight
mechanism is to probabilistically account for the inevitable
residual CFO and the time-varying phase offset, thereby
complementing CFO estimation techniques by mitigating the
impact of the residual CFO during demodulation. While our
approach is applicable to any modulation scheme whose
constellation points exhibit different amplitudes, we are par-
ticularly interested in exploring its benefits in PHY-layer MO
security, where an already robust modulation scheme (e.g.,
BPSK or QPSK) is camouflaged in a dense, asymmetric
constellation map (e.g., 64-QAM) [8]. Our contributions can
be summarized as follows:

« We analytically derive the probability distribution for
the received OFDM symbols under imperfect CFO es-
timation. Because no closed-form expression exists for
this distribution, we numerically approximate the opti-
mal CFO-aware demodulation boundaries for one QAM
and one APSK scheme — as illustrative examples — for
subsequent analyses.

« We study the BER performance when the Rx employs
optimal CFO-aware demodulation regions for 16-QAM,
64-QAM, regular (4x2) 8-APSK, and modulation obfus-
cation; and we show that the proposed optimal scheme
theoretically achieves up to 3 dB gain.

o We develop an SVM algorithm to learn and efficiently
approximate the optimal demodulation boundaries. The
algorithm uses only 22 floating-point multiplications for
symbol detection. We then experimentally evaluate the
performance of this scheme on a USRP testbed and
corroborate its theoretically established gain.

o We further optimize the Ungerboeck TCM codes [24]
(used in [8] for MO) w.r.t. robustness against phase errors
by solving a graph vertex cover problem; we also propose
a normalized distance metric to be used in the Viterbi de-
coder of TCM under our adaptive demodulation scheme.
If combined with the CFO-aware adaptive boundaries,
the optimized MO can gain over 5 dB over conventional
(unobfuscated) demodulation schemes.

II. PRELIMINARIES — CFO ESTIMATION ERRORS

To better understand the impact of residual CFO on the
demodulation process, we first explain how CFO is typically
estimated at an Rx. Without loss of generality, we assume
that the PHY header is part of the frame payload and that the
Tx employs QAM or APSK for payload modulation. Every
payload is prepended by a preamble, which is used by the Rx
for channel and CFO estimation.

We consider an OFDM-based 802.11 system, where the
preamble is a periodic signal of period T < 4 i seconds. This
signal is comprised of two or more identical cycles of some
standardized waveform. The identical parts (cycles) remain so
even under a multipath fading channel of certain coherence
times (> 8 us). The payload consists of N subcarriers. The
subcarrier spacing (312.5kHz) is less than the coherence
bandwidth. Hence, the channel on any given subcarrier is flat
additive white Gaussian noise (AWGN).
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Let Ay denote the true CFO between the Tx and the Rx.
In the time domain, CFO creates a time-varying phase offset
©(t) £ 2nt Ay, where t is the time since the start of the
transmission. To estimate A f» Rx considers two successive
cycles of the preamble, estimates the phase difference between
the corresponding T'-second-apart samples in these cycles, and
compensates for the estimated CFO before decoding the rest
of the frame. We explain Moose’s ML estimation of the phase
offset, which is used in OFDM-based 802.11 systems [15].
Let S? and n; be the transmitted preamble sample and the
additive noise, respectively, at time t. We assume that ny
follows a circularly symmetric complex normal distribution
of zero mean and variance o2. To estimate o(T) = 21T Ay,
the Rx multiplies the complex conjugate of a received sample,
say S{ 4 ny, by the sample S}, . +n40 = SF eI T) L,
that is received 7" seconds later:

A *
G (57 ) (SDyp )
= |S§)|26]27TTAJ" + Sf*nt-&-T + Sf+Tn2‘ + TL:TLH_T

(D

where |z| and z* are the amplitude and conjugate of a complex
number z, respectively. To estimate the CFO, the Rx then
measures the phase of d; and divides it by 277". Because the
preamble duration is less than the coherence time, the channel
coefficient does not impact CFO estimation, and hence it is
not shown in (1). If the noise is nonnegligible, the phase of
d; will not be 27T'A ;. To improve the accuracy, the Rx takes
! different sample pairs from the preamble and averages out
the noise. More specifically, the estimated phase offset over l

sample pairs, denoted by apl(T), is computed as follows:

oi(T) 2 « Z dri) )

where £(z) represents the phase of a complex number z, and
-1 -1
2T A 2
ZdTi/l =TT Z 1S3/l
i=0 i=0

+ Z (Sgw:/lnt—&-T + nIS’?i/FPT + n}i/lnTi/l_,_T) .
i=0
(3)

Although the above summation improves the accuracy,
noise often prevents perfect phase estimation. A residual
CFO 6y £ Ay — o(T)/27T remains, which leads to inter-
carrier interference (ICI) and a time-varying phase offset on
every subcarrier. (To simplify the exposition, unless indicated
otherwise we assume that [ is constant and drop the subscript
I from ¢;(T) in the rest of paper.)

If 6 is known, the Rx can design an optimal demodulator.
With additive circularly symmetric noise and equally prob-
able transmitted payload symbols, the optimal demodulation
boundaries are specified by the Voronoi diagram whose cells
(regions) are centered at the default constellation points. These
boundaries can be drawn by rotating the default demodulation
regions of the underlying modulation scheme by the exact ¢ -
induced phase offset (see the example in Fig. 2). However, in
typical wireless systems the Rx uses only the most probable

(@) 6y = 0 (default constellation) (b) ¢ 7# 0 (induced phase offset = g)

Fig. 2. Optimal ML demodulation regions for 16-QAM under circularly
symmetric additive noise.

value of ¢(T), as computed in (2). When this estimation
is erroneous because d; # 0 and is unknown, the Rx still
demodulates the symbols based on the default boundaries,
which are no longer optimal. As we discuss later, the resulting
BER can be significant. One of the key points in this paper is
not to rely solely on the most likely value of ¢(T'); rather, we
improve the overall BER by taking into account other possible
values of ¢(T") during demodulation.

III. CFO-AWARE ADAPTIVE DEMODULATION

Let ¢ £ 2775 and let S; denote the noise-free payload
symbol on a given subcarrier received ¢ seconds after the end
of the preamble transmission. In here, T" is the same as the
OFDM symbol duration and ¢ is taken in multiples of 7.
The impact of d; on the received payload symbol S; + n; is
twofold. First, 05 # 0 distorts the phase and amplitude of the
symbol by multiplying it by a complex coefficient Zy(df) in
the frequency domain. Using the results in [15], we calculate

To(65) = Smﬁ; 2) gramsst=gv o (v (1=4)/2
sin (/2)
g2
Second, d5 # 0 leads to ICI over subcarrier k, denoted by
VACHE

“4)

it—u it

N/2
Z gi sin (v/2) *jwi{zvk)eJTt Nt
N2, N sin 71/)/2'”(1 k)

TiK

(&)
where S° is the noise-free symbol received on the ith subcar-
rier after channel equalization.

A. Spatial Probability Distribution of Received Symbol

To study the distribution of the received symbols after CFO
estimation and correction, we first rewrite the distorted signal
as follows:

(St +ne)Zo(d) = S:Zo(8¢) + m:Zo(dy)- (6)

Note that |n;Zg| ~ |n.| for ¢» < 1. However, £(n:Zo)
is the modulo-27 addition of £(n;) and %t Y L While
receiving S;, n; is independent of the noise that was added
during the transmission of the preamble and that resulted in
residual CFO dy. Thus, n; and %t — w% are independent
random variables. The probability density function (pdf) of the
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Fig. 3. Spatial probability distribution of the ICI, considering four adjacent
subcarriers modulated using 16-QAM. ¢ = 0.0628, equivalent to 0.01
normalized CFO.

sum of two independent periodic random variables with period
27 is the modulo-27 circular convolution of their individual
distributions. Hence, the pdf of the phase of n,Z is the circular
convolution of the pdf of £ (n;) and the pdf of the phase offset.
The phase of the circularly symmetric white Gaussian n; is
drawn from a uniform distribution.

Let fn(6) and fo(0) represent the pdfs of «£(n:) and
%t — w%, respectively, defined over 6 € [0, 27). The phase
£(nZy) takes the same value for the unwrapped phases 6
and 0 £ 27. So the circular convolution of fx(#) and fg(6),
denoted by (fn*fs)(6), can be analytically expressed as [25]:

(i * f2)(6) /_°° In(M)[fa(® =7 —2m) + fu(6—7)
+ fo(0 — 7+ 2m)]dr

1 27

o ; [f@(H—T— 2m) + fo(0 — 1)
+ fo(0—7+ 27r)]d7'

1

5 = In(0). )

In other words, the residual CFO dr does not change the
pdf of £(n;), i.e., n; remains circularly symmetric additive
noise. The pdf of the phase of the summation of adjacent
subcarriers in (5) also tends to be circularly symmetric when
S%’s have different phases and different amplitudes®, which is
the case in 16-QAM and 64-QAM. Fig. 3 shows an example
of the distribution of the ICI for 16-QAM when ¥ = 0.0628
(corresponds to 6y = 3125 Hz, for Wi-Fi). Accordingly, the
same circular convolution in (7) shows that %t — w% in
(5) keeps ICI an approximately circularly symmetric additive
parameter. This is important because a circularly symmetric
additive noise/interference does not impact the optimal demod-
ulation boundaries.

However, the phase error causes S; to rotate on the con-
stellation map. To calculate the pdf of S; given that S is the
transmitted version of this symbol, we need the pdf of the
phase offset %t, which depends on the pdf of .

To derive the pdf of ¥, we use the distribution of the phase
error in [27, Eq. 5-119] for the case of two signals of the same
amplitude but possibly different phases that are transmitted
over uncorrelated AWGN channel. Accordingly, the pdf of
when the Rx uses only a pair of samples to estimate the phase

’Note that the distribution of ICI is not Gaussian for high-order QAM
modulation schemes [26].

(see (1)) is

1

/2
fo() = o /0 sin(7) [1 + (1 + cos(v) sin(T))] ®

~ e—’y(l—cos(w) sin(r)) dr

where v = E[|SP|?]/c2 is the SNR and E[|SP|?] is the
average transmission power for the preamble. Moose’s ML-
based CFO estimation method for OFDM systems [15] uses [
such preamble pairs and computes (2), whose distribution, to
the best of our knowledge, has not previously been derived.
Moreover, the expression in (3) cannot be easily converted
to (1) by substituting Zi;é SE. s, for S? and adjusting the
noise power (SNR), because the equivalent distribution of the
sum-product of the noise terms in (3) is not known?, although
Sg,’,i/l’s and the pdf of n; are known.

To address this issue and derive the pdf of i) based on (2),
we adjust the SNR in (8) based on the variance of J; under
Moose’s method. For simplicity, assume that E[|S;|?] /02 = 7,
L.e., preamble and payload symbols are transmitted at the same
power. Schimdl and Cox derived the variance of ¢(T") in [16]
under Moose’s method, which is given by 03, = WQ—lh Because
1 has a zero mean (see (8)), [ fu(¢)y?0y = o3, Hence, the
equivalent SNR when [ pairs are used is given by [, i.e., using
[ pairs of identical samples boosts the SNR by /. In OFDM-
based 802.11 systems, [ is usually 64. Such an SNR boost is
enough to ensure that the system operates in the high SNR
regime. This allows us to use the following approximation for
(8) [29]:

\/HCOS2 (%) 672l'ysin2 (
27 cos ()

Note that 1) is defined based on T', and fy is an even function
that remains stationary after transmitting the preamble and
compensating for the estimated CFO. So, on average, after
each symbol, the phase offset during the payload increases by
E(]¢|), the expected value of the phase offset after one OFDM
symbol duration. As an example, when v = 20 dB, the SNR
at which 16-QAM is expected to achieve BER =10~%, one can
show using numerical methods that E(|1|) =~ 0.01* (in rad).

fo(¥) ~ Y0 < W] < m/2. 9)

Next, we derive the pdf of the received symbol under
additive circularly symmetric noise n;, given that the Tx
transmits symbol S on a given subcarrier. Suppose that S is
located at (zg,ys) in the constellation map and that the phase
offset 1 satisfies 0 < |¢)| < /2. With this phase offset and
with n; = Ji = 0, the symbol rotates on the constellation map
and moves to the point X ;p We denote the rotated version of S
(ie., Sei2TFt) by X¥ 2 {xgcos(¥)) —ys sin(), zs sin(yh) +
ys cos(¢p)}. Given that S was transmitted, the probability of
receiving a symbol in location (z,y) at time ¢ = T under

3There are approximations for the product of Gaussian random variables
(e.g., [28]). However, these approximations often suggest zero variance when
the mean values of the respective random variables are zero.

4For 16-QAM, once the accumulated phase offset exceeds 0.295, the Rx
will experience nonzero BER even in the absence of additive noise [8].
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(@) (zs;,¥s,) = (—1,1) and
(I527y52) = (_173) (16-QAM).

(®) (zs,,ys,) = (=3,1) and
(x52 ) ySQ) = (_37 3) (16-QAM).

-9 -8 -7 -6 -5

(©) (zs,,¥s,) = (=7,5) and
(€55,Ys,) = (=7,7) (64-QAM).

Fig. 4. Optimal CFO-aware boundaries between solely two adjacent QAM symbols (y = 15dB and | = 64).

AWGN is:
p(,]S) = / p(, 41, ) fu () dip =~
g

/ /2 173 cos® (1/2)
—n/2 Pavg (2m)%/2/cos (1)

where the factor P,  is used to normalize the power of the
underlying modulation scheme. For example, with equiproba
ble transmitted symbols, P,,, = 10 and 42 for 16-QAM ana
64-QAM, respectively. When t # T, v in (10) is replaced
by %t. The pdf under both AWGN and ICI is even more
complex, but as we will discuss next, in contrast to Zy, which
is multiplicative, an additive circularly symmetric noise or
interference does not impact the optimal demodulation regions.

10

" Nx-x¥2
e_zmsm (w/2)—waq

B. Demodulation Regions Under Imperfect CFO Estimation

Using an ML-based demodulator, the Rx maps the received
symbol to:

S* = arg mgxp(x,y\S). (11)

Because the integral in (10) does not have a closed-form
solution, it is difficult to solve (11) and precisely identify the
CFO-aware boundaries, except when the transmitted symbols
are of the same amplitude, as in the case of QPSK. The
CFO-aware boundaries in this case are the same as when
07 = 0. In general, the CFO-aware boundary between any two
adjacent reference constellation points S(*) and S(®) of equal
amplitude is the same as when &; = 0 because p(z,y|S™)
and p(z,y|S®) remain symmetric w.r.t. the perpendicular
bisector of the line segment determined by the two points.
Similarly, the distributions will be symmetric under additive
noise/interference even for symbols of unequal amplitudes,
as long as the noise is circularly symmetric and independent
of the amplitudes. That is the case when we add circularly
symmetric and identically distributed variables n; and Jj to
the received symbol. However, when |S(V)| # |S(?)| and the
spatial distributions of the symbols are not identical, it is not
trivial to identify the shape of these boundaries, unless we
numerically compute (10).

Similar to the case when 0y = 0, we assume that the
optimal CFO-aware boundary is the curve whose points satisfy
p(x,y|SM) = p(x,y|S®), and numerically compute it for a

=% t=0
—t=8T

s
. \,
o o
7 | D
o o
, N
, N
r A [ 73
N ,
- °
° ~ °
N /
N2
-

(a) (4x2) 8-APSK (t = 0 and 8T)

(b) 16-QAM (t = 8T

Fig. 5. Optimal demodulation regions for regular (4 x 2) 8-APSK and 16-
QAM (v = 8 dB).

few cases. Fig. 4 depicts an example of the pairwise CFO-
aware demodulation boundary for three different pairs of
adjacent points on the QAM constellation map. Note that for
a given Jy, the phase offset %t, and hence p(z,y|S), vary
with time. Thus, in each figure, we plot the boundaries at
different time instances ¢. Observe that the boundary is often
not linear and can change significantly over time. At the start
of the payload (e.g., t = T'), the boundary is similar to the
default case. However, as more symbols are received, in the
absence of any robust CFO tracking mechanism, the boundary
starts to look like a curve; it expands the region of the higher-
amplitude symbol to one side of the lower-amplitude symbol
(in this case, left) and shrinks the region on the other side. In
Fig. 4, the accumulation of phase offset over time increases
the likelihood of the higher-amplitude symbol to be received
in the left side of the other symbol. At the same time, the
lower-amplitude symbol pushes the boundary up towards its
right side. Snapshots of the CFO-aware boundaries for regular
(4x2) 8-APSK and 16-QAM modulations are shown in Fig. 5.

IV. APPLICATION OF CFO-AWARE ADAPTIVE
DEMODULATION IN MODULATION OBFUSCATION

Before we introduce our SVM-based technique for effi-
cient approximation of the demodulation boundaries, in this
section we explore an important application of our CFO-
aware adaptive demodulation in the context of modulation
obfuscation (MO). MO is a PHY-layer security technique
that aims at hiding the payload’s modulation scheme, and
hence, its transmission rate. In typical wireless systems, the
transmission rate of the frame payload is adjusted according
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to channel conditions and contention. Rate adjustment is done
by varying the modulation scheme or its order. By detecting
the modulation scheme for one or more packets, a curious
eavesdropper can perform traffic classification to breach user
privacy or launch selective attacks [9]-[11].

MO techniques remedy such vulnerability by obfuscating
the payload’s true modulation scheme. This is done by se-
cretly mapping the transmitted symbols to the constellation
map associated with the highest-order modulation scheme
supported by the system. For example, BPSK, QPSK, 16-
QAM, and 64-QAM symbols would all be mapped to the
64-QAM constellation map. Because the mapping is done
based on a time-varying shared secret, it can be varied on
a per-symbol basis (e.g., the projection of the four QPSK
constellation points onto a subset of the 64-QAM map can
be varied from one transmitted QPSK symbol to the next.

We use the notation M;,i = 1,..., M, to refer to the
payload’s modulation schemes, where M is the lowest-order
and My is the highest-order modulation scheme (for simplic-
ity, we assume all modulation schemes M, ..., M s belong
to the same family, e.g., QAM). Recent MO techniques [7],
[8] take advantage of TCM to perform the M; — My,
mapping for any given 7 and, at the same time, maintain the
same BER performance of the original M;. However, because
of the higher susceptibility of denser constellation maps to
CFO, these techniques need more accurate CFO estimation
methods to successfully retrieve the original M;-modulated
symbols from the constellation of M ;. Otherwise, their BER
performance deteriorates significantly.

One such obfuscation technique is called Conceal and Boost
Modulation (CBM) [7]. This scheme potentially applies TCM
to all the symbols of My, to directly map an M,;-modulated
symbol. Our CFO-aware adaptive demodulation scheme can be
readily used to enhance the performance of CBM under erro-
neous CFO estimation. Another MO technique, called Friendly
CryptoJam (FCJ) [8], utilizes a subset of constellation points
of My, to map M;’s symbols but secretly varies this subset
from one symbol to the next; utilizing all M, constellation
points. FCJ significantly reduces the coding complexity, but at
the expense of lower coding gain compared to CBM. Without
loss of generality, we discuss the application of our CFO-aware
demodulation to FCJ.

Although the M, points used for a given symbol in FCJ
may be sparser than normal Mj;, FCJ exhibits the same
level of sensitivity to CFO as normal M j;-modulated symbols
because two symbols in the selected subset of M j,-modulated
symbols can be as close to each other as the symbols in the
constellation of Mj,. In the following, we take advantage
of the sparsity of M j;-modulated FCJ symbols to improve
its robustness to CFO. Specifically, we first jointly optimize
its TCM code design w.r.t phase offset and coding gain. We
then customize the adaptive demodulation in Section III to the
particular MO in FCJ to further enhance its performance.

A. Optimizing TCM Codes w.r.t. Phase Offset

For + = 1,..., M, FCJ uses minimal two- and four-state
TCM codes with rate log, |M;|/(1+1log, |[M;|), where | M;]|

0/uf
I/z(z

—(0—on 7@
~o" ©

(a) Two-state TCM.
s, ——{(0)— 0/, —(0)— 0/
\@\0/ © 72
o "~ e

® ® ® ®

(b) Four-state TCM.

Fig. 6. Trellis of minimal TCM codes [24] for M; = BPSK. (Note that the
pair (a, b) varies from one transition to another.)
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is the order of M, to obfuscate the payload’s modulation
scheme. To do that, it first partitions the constellation points
of Mj; into several dlstmct subconstellations, denoted by
U={u,...,u WM Where § = 0,.. ., |[Ma|/IM;] — 1.
Note that |Ufj| = |M;|. The rationale behind relying on these
codes is that they have the lowest constraint-lengths among
all possible TCM codes, which means their encoder and
Viterbi decoder have the least complexities. In addition, power
consumption and decoding delay’ at Rx are minimized with
the use of minimal codes, a feature that justifies incorporating
these schemes in practical systems.

These TCM minimal codes need a set of 2|M;| constella-
tion points as output symbols. For M;-modulated symbols at
the Tx, the authors in [8] assign U, | JU, as the set of output
symbols in each transition, where the pair (a,b) € j x j is
selected arbitrarily. Under AWGN, the design of each individ-
ual subconstellation ¢/ in FCJ is optimal w.r.t. demodulation
performance. However, the selection of a pair (a,b) from
(Marl/IMil) possible pairs was not optimized in [8].

As illustrative examples, we consider the trellis of the min-
imal two- and four-state TCM codes [24] with M; = BPSK.
In Fig. 6 we show a pair of paths on this trellis with minimum
free distance and their corresponding output symbols. Consider
the trellis in Fig. 6(a). An optimal subconstellation U/, in
FCJ maximizes the Euclidean distance between any u and
ul € U,, which appear in the ﬁrst transition. However, the
distance between u? € U, and uj) € U, which appear in the
second transition, can be as small as the minimum distance in
M. The same can be seen in the four-state TCM (Fig. 6(b)).

To optimize the selection of (a,b), we propose an optimal
pairing of the subconstellations such that if ¢/, and U, are to
be used in the same transition, the minimum distance between
the elements in any U, and U}, and their robustness to phase
offset are both maximized. A byproduct of this design is
maximization of the gain (maximization of the free distance).
A similar optimization can be applied to boost the robustness
of TCM when M; # BPSK. Note that for such M,’s, parallel
transitions between two states appear in the trellis.

5The decoding delay is mainly specified by the path truncation depth of
the Viterbi decoder, which is linearly proportional to the constraint length.
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Fig. 7. Examples of optimal pairs in 64-QAM and how a shift results in
another optimal pair. The points with horizontal bars (red color) belong to
pairs (U;; ,U;,) whereas the points with vertical bars (blue color) belong to
(U, ,Uj,). Inside a pair, U;, and U;, are shown with thicker bars.

TABLE I
CODING GAIN OF THE OPTIMAL MAPPING WHEN M, =16-QAM.
. FCJ [8] Optimal
7 M;
771(2) 771(4) 771(2) 771(4)
1 BPSK —0.46 dB 2.3 dB 0.79 dB 3 dB
2 QPSK 0 dB 2.04 dB 0.79 dB 2.04 dB
TABLE II
CODING GAIN OF THE OPTIMAL MAPPING WHEN My =64-QAM.
) FCJ [8] Optimal
7 M;
7]@(2) 7]@(4) 7]@(2) 7]@(4)
1 BPSK —1.05 dB 1.9 dB 0 dB 2.46 dB
2 QPSK —0.92 dB 1.83 dB 0.58 dB 1.83 dB
3 | 16-QAM 0.76 dB 2.8 dB 1.55 dB 2.8 dB

1) Maximizing the Euclidean Distance: To find a set of
optimal pairs, we first pick one of the sets {; and then find a
different set whose elements have the largest possible distance
from the first set (constellation points filled with horizontal
lines in Fig. 7). This is an attempt to find an upper bound
on the maximum distance between the set of optimal pairs.
Using the set partitioning results in [24], we can find such
a pair, say (U;,, U;,). Next, we construct the rest of the
optimal pairs by circularly shifting f;, and Uf;, horizontally
and/or vertically on the constellation map of M, (see the
examples in Fig. 7). This guarantees that all pairs have the
same maximum Euclidean distance, and so they are optimal.
Note that this optimal solution is not necessarily unique.

In [1], we analyzed and evaluated the achieved coding gain
when the sets are optimally paired. The results are summarized
in Tables I and II. For ¢ = 2,4, nEQ) denotes the asymptotic
coding gain of a g-state TCM used in the M; — My,
mapping. The enhanced (and nonnegative) gains of the two-
state TCM suggest that using this code, which is the least-
complex TCM code possible, is sufficient to preserve the BER
performance of an MO scheme. In addition, the achieved gains
are close to the gains in [7] but with smaller constraint length
(i.e., complexity) and/or more robustness to phase offset. For
example, the least-complex code for upgrading BPSK to 16-
QAM in [7] has a constraint length of 3 and gain of 3.42 dB,
while here, we use a code with constraint length of 2 and gain
of 3 dB.

In contrast to FCJ, CBM does not vary the set of possible
|M;| symbol locations on M ;’s constellation map for each
transition. This implies that all Mj; symbol locations must

TABLE III
OPTIMAL ¢pmin (IN RAD) COMPARED TO ¢ in, VALUE IN CBM
SCHEME [7] AND IN THE UNOBFUSCATED M.

M; Unobfuscated M = 16:QAM Mar = 64-QAM
CBM [7] Optimal CBM [7] Optimal
BPSK /2 =1.571 0.295 0.5475 0.135 0.5055
QPSK 7/4 =0.783 0.295 0.4636 0.135 0.3805
16-QAM 0.295 N/A N/A 0.135 0.1651

be considered in each transition to guarantee uniformly dis-
tributed constellation points (a requirement for MO). Although
CBM has a slight coding gain advantage over FCJ, it forces
the Rx to check for all | M ;| symbols during decoding. This
increases the decoder’s complexity and makes it more sensitive
to phase offset. In contrast, using 2| M;| symbols with a max-
imum Euclidean distance provides more robustness to phase
offset. Before we apply our adaptive demodulation scheme, we
further optimize the optimal pairs obtained above w.r.t phase
offset. We exploit the fact that the method above may find
multiple optimal pairs of maximum Euclidean distance, and
we search for those that achieve the highest robustness to phase
offset.

2) Maximizing robustness to CFO: Let each subconstel-
lation U, be a graph vertex with label j. An edge exists
between two vertices if the associated subconstellations have
the maximum Euclidean distance, i.e., they can potentially
form an optimal pair. Knowing the minimum distance between
two such subconstellations, we first detect all such pairs by
iterating over each subconstellation Uf; and comparing the
minimum distance to those that are cyclic shifts of I4;. Second,
for each candidate pair, we determine the minimum phase
offset ¢,,;, that results in a demodulation error. This phase
offset is set to be the weight of the edge between the two
subconstellations in the graph. Third, we apply a vertex cover
algorithm to find a set of optimal pairs that maximizes @,
over all the pairs in the set.

In Table III, we provide the maximum ¢,,;, for the TCM
codes derived above and compare it with uncoded M, and
with the scheme in [7] for different M; and M ;. The results
show that ¢,,;, under our optimal pairing scheme is almost
four times larger than ¢,,;, in [7]. However, that is still smaller
than that of the unobfuscated M, which we address next.

B. Adaptive Demodulation for Modulation Obfuscation

We now customize our CFO-aware demodulation scheme
for the enhanced TCM-coded MO presented in Section III-B.
The set of 2|M;| symbol locations in this method may
consist of symbols with drastically different amplitudes. For
example, for M; = BPSK and Mj; = 16-QAM, this
method may produce “optimally” paired subconstellations
U, = {(-3,3),(1,-1)} and U, = {(-3,-1),(1,3)}. We
illustrate the spatial distribution of these sets in Fig. 8. We
observe in Fig. 8(b) that the distribution of the transmitted
symbol (1, —1) is very dense while the distribution of symbol
(—3,3) is stretched across a wider area. That will push the
optimal demodulation boundaries towards the symbols that
have higher amplitudes (see Fig. 9).

Similar to the approach used in Section III-B for QAM,
here each demodulation region can be approximated using
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(a) Four symbols without CFO (b) Four symbols with CFO

Fig. 9. Optimal demodulation regions for a quaternary subconstellation (y =
7dB and t = 16 T)). Dashed lines denote the default boundaries when 6 = 0.

(10). However, to decode coded-modulated symbols, the Rx
needs the sum of Euclidean distances in the Viterbi algorithm
to detect the most probable sequence of symbols rather than
just identifying the most probable region for each individual
symbol. Under our adaptive demodulation, a received symbol
may not be decoded into the closest reference point on the
constellation map. So the Rx cannot rely on distances for
decoding, unless each distance is normalized with respect to
its underlying region. Accordingly, we propose the following
distance normalization scheme:

For each received symbol, the Rx first identifies the most
probable region that the symbol belongs to. It then finds
the length of the line connecting the reference point of that
region to its CFO-aware boundary via the location of the re-
ceived symbol on the constellation map. Finally, the Euclidean
distance from the received symbol to the reference point is
normalized w.r.t. the line length. We leave the implementation
and evaluation of this scheme for future work.

V. EFFICIENT CFO-AWARE DEMODULATION USING SVM

As indicated before, it is difficult to precisely characterize
the nonlinear CFO-aware boundaries in closed form. In the
absence of a closed-form expression, the Rx will need to
represent the boundaries using the discrete points that are
obtained by numerically solving (11) for each ¢ and . Then it
may need to solve a point-in-polygon (PIP) problem to detect
the region that a received symbol belongs to. The complexity
of the PIP problem is linear in the number of points of the
polygon/boundary, and so is too expensive for the Rx, which
needs to detect a large number of symbols in a short period
of time. Instead, we propose a machine learning approach
for learning the best approximation of the boundaries and
significantly reducing the computational complexity of PIP
problem with negligible impact on the BER performance.

4
"" ¢
2

(c)  Symbols and

(—3,3) with CFO

(=3,—1) and (d) Symbols

(_37_1)
(1,—1) with CFO

Fig. 8. Spatial distribution of received symbols for subconstellation {(—3, —1), (-3, 3), (1, —1),(1,3)} under simulated AWGN.
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Fig. 10. Training set of the regions (classes) in the first quadrant of the
16-QAM constellation map (y = 10dB and t = 12 T).

A. Overview of the Proposed Approximation Method

Before we explain our machine learning method, we start
with an example. Consider the first quadrant of the 16-QAM
constellation (i.e., zg,ys > 0). In Fig. 10, we show a
discretized representation of the optimal constellation regions,
obtained based on (11) when v = 10dB and ¢t = 12 7. If
we view the points within each region as training set of a
class, then we need to train a classifier that efficiently classifies
them. A received point on the constellation map is eventually
attributed to one of the few transmitted symbols (classes) of
the underlying modulation scheme. So the in-band and the
quadrature components of a received symbol are the features
of the data points used for classification.

Our classifier must first be trained for different values of
~v and t, both of which impact the shapes of the optimal
boundaries. Then, in the testing stage, a machine learning
algorithm is used to classify/detect received symbols. The
classifier’s performance is expected to be close to (but not
better than) the solution to the PIP problem with large
number of polygon points. Our ultimate goal is to achieve
a low-complexity testing phase without degrading the BER
performance. We also note that an arbitrary machine learning
approach may not be suitable for our goal. For example, we
cannot allow the classifier to use complicated computations
such as exponentiation or trigonometric functions because
such operations have comparable complexity to solving (11)
with nonlinear constraints.

Note that we already have an accurate representation of the
various classes, thanks to the pdf derived in (9). One can
view (11) as a classifier that does not require any training
but is computationally expensive in the detection/test phase.
We propose to develop a classifier on top of the classification
results of (11) that achieves the same performance in the (on-
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line) test phase but with a reasonably higher (offline) training
complexity than the detection algorithm in (11). That results
in a lightweight classifier that is suitable for implementation
on resource-constraint devices. The process of choosing such
a classifier is explained next.

B. Generation of Training Data Set

We need to generate a training set that accurately represents
the distribution of the received symbols (data) associated with
a constellation point (class). Such a distribution is already
given in (10). Hence, we can use the cumulative distribution
function (CDF) of (10) and inverse transform sampling to
generate the training data for each class. Because the inverse
CDF of the likelihood probability in (10) is not straightforward
to obtain in closed form, instead, we sample and numerically
approximate the CDF of a given class in small intervals.

It is worth mentioning that the training process can be
performed offline. The important part for us is the test phase
(detection phase), which must be sufficiently fast. Motivated
by this, we narrow down our search for possible classifiers to
those that have a lightweight test phase.

C. Classifier Selection

As can be seen in Fig. 10, each pair of adjacent classes is
already partitioned by a decision boundary, i.e., classes are
non-overlapping. It has been proven empirically, and in some
cases theoretically, that neural networks (NNs) and SVMs can
guarantee a good testing accuracy among different machine
learning methods [30].

In the case of a back-propagation-based artificial NN,
where perceptrons have at least one hidden layer, Universal
Approximation Theorem implies that a perceptron can learn
any arbitrary decision boundary [31, Ch. 15]. However, there
is no proof on how many nodes are needed in the hidden
layer to do that. Further, the transfer function used in hidden
layers of NNs and the decision rule in the last layer of such
networks usually involve functions such as logistic regression
or trigonometric functions, which may be difficult to imple-
ment on computationally constrained devices. So NNs are not
suitable for our problem.

Another family of classifiers that inherently assume sepa-
rability between classes is SVMs. One of their advantages is
that the decision rule for a SVM is much simpler than that
for an NN. In fact, the decision is made based on the sign of
the dot product of a data-point-related vector and a weighting
vector. Thus, we select an SVM classifier for our problem.
An important advantage of SVM for us is that one can use
the kernel trick to classify nonlinearly separable classes [31,
Ch. 5]. Although the computational complexity of SVM can
greatly depend on the used kernel, we make sure that our
kernels are reasonably easy to generate.

Looking at the shape of the boundaries in Fig. 4 and 10,
we can intuitively see that they resemble the shape of an
ellipsoid. This observation can help us in finding a kernel for
the SVM classifier. For a received symbol S at (zg,ys), the
kernel we choose for the SVM classifier can be represented as
KT (zg,ys) = [t% V2x5ys y%]. Hence, training the SVM

classifier for a two-class problem yields a weighting vector
wiTj = [wg) U’S) wg’)]T and a scalar b;;, such that we can
use the following decision metric:

{Ci» wiiK(zs,ys) + bij 2 0

Cj Win(IS,ys) + bij <0

(%)

where C; and C; denote the ith and jth class, respectively,
ihwji=1,...,|M|.

The discussion above assumes a pair of classes. To gener-
alize it to a multi-class case, we solve a series of pairwise
classification where the classifier between each pair of classes
is an SVM with the above-mentioned kernel. For example, if
there are four adjacent classes, same as what can be seen in
Fig. 10, we need to have weighting vectors w;; and b;;, 1 # 7,
i,7 = 1,...,4 for pairwise classification. For the particular
case of Fig. 10, we need to train 4 x 3 = 12 classifiers, which
can be done offline.

For an arbitrary number of classes, in the test phase, the
decision metric for classification is as follows:

| M|

Cc* = argm?xz { min (max (—1,W;‘Z-K(x, y)+by;), 1)}
T

(12)
The decision rule above is in fact a all-versus-all classification
that uses SVM as its underlying classifiers [32]°. Note that a
multi-class SVM as a single joint optimization problem has
been proposed in [33]. Although the complexity of the test
phase of the multi-class SVM in [33] is the same as that in
(12), the method in [33] requires several tunable parameters
that can complicate the learning process, and so we do not
consider it here. Using the rule in (12) instead of the one
in (11) in the test phase significantly reduces the number of
computations only at the expense of offline classifiers training.
Next, we derive the exact number of computations needed for
solving (12) assuming an arbitrary number of classes.

D. Complexity of the Proposed SVM-based Scheme

The amount of computations in (12) depends on the number
of underlying pairs of classes. For high-order modulation
schemes with several classes, the pairwise SVM-based detec-
tion scheme may impose a very high number of computations.
However, we rely on an important property of two-dimensional
constellation maps to reduce the number of pairwise classifi-
cations: It can be verified that once a classifier is used to
distinguish between two adjacent classes C; and Ca, it can
also classify C; and any other class located in the opposite
side of Cy along any line connecting C; and Cs.

See Fig. 11 for an example, where the boundaries of the
64-QAM modulation in its first quadrant for a given (v, t) are
depicted. The line that separates C; and C, will also separate
C; from C3 and from Cs, but it obviously cannot not separate
Cy from C4. This way, we can eliminate many redundant
pairwise classifications and reduce the storage complexity of
(12) without sacrificing the classification accuracy. Extending

0In the literature, this method is also recognized as one-versus-one classi-
fication.
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Fig. 11. The CFO-aware boundaries of 64-QAM (v = 14dB and ¢t = 87).
Red circles represent the reference constellation points and optimal demodu-
lation regions are depicted with solid nonlinear curves.

this idea to arbitrary number of classes, it turns out for
modulation schemes higher than 64-QAM regardless of the
number of constellation points, the multi-class SVM in (12)
needs to be done for at most seven adjacent classes that
surround the location of the received signal. Hence, the com-
putational complexity of the multi-class SVM is independent
of the constellation size.

Note that the demodulation boundaries in 64-QAM in
Fig. 11 can be a lot more complex than the boundaries in 16-
QAM scheme. In fact, it can be seen that some demodulation
regions may be far away from the location of their reference
constellation point, signifying the difference between optimal
CFO-aware boundaries and default boundaries.

Algorithm 1 below outlines the overall proposed SVM-
based scheme for efficient symbol detection in the first quad-
rant. To reduce the storage complexity, the Rx stores only
the classifiers of that quadrant (thanks to the vertical and
horizontal symmetry in the constellation map), and considers
(|zs|, |ys|) for classification therein’. It then uses the signs of
zg and ys to map the symbol to the corresponding class in
the quadrant specified by the signs.

Algorithm 1 The SVM-based detection scheme
e Training Stage (Offline Computations)

1: Generate training sets for different values of v and t¢.
2: Train pairwise SVMs and store the decision boundaries in
the memory of the Rx.
o Test/Detection Stage (Online Computations):

1: Use the preamble of the received frame to compensate for
CFO and estimate the SNR ~.

2: For the underlying payload symbol, calculate the time ¢
elapsed after the preamble.

3: Fetch the SVM classifiers corresponding to the estimated
v, t, and the adjacent classes to the received symbol on
the constellation map.

4: Exhaustively search over all 7 classes to find the one that
the received symbol belongs to.

1) Storage Complexity: For different tuples (v,t), we
need to store different classifiers in the memory. This is in fact

"This can also be seen from the shape of CFO-aware boundaries in
Fig. 5b. Hence, having the classifiers of one quadrant is sufficient to perform
demodulation across the entire constellation map.

due to the dependency of the detection rule in (11) to v and
t, which requires us to run the training stage of Algorithm 1
offline for a range of v and ¢. The storage needed for 64-QAM
modulation scheme is as follows. Each pairwise classifier
between C; and C; consists of a 3-component weighting
vector w;; and an intersection value b;;, where each scalar
can be considered as four 32-bit numbers. Furthermore, as
mentioned in Section V-D, at most the seven adjacent classes
are sufficient for pairwise classifications. Finally, out of the
64 constellation points of the 64-QAM, we need to consider
only the 16 points in the first quadrant. So assuming n different
values for « and m different values for ¢, the required memory
becomes

n X mx 16 X 7 X 4 X 32
64-QAM Adjacent SVM
Points Classes Weights a3

which is equivalent to 1.75nm KB.

2) Computational Complexity: In the testing stage, the
Rx can start by an arbitrary pair pf classes and eliminate one
class at each classification round. This heuristic method is also
called classifier chain [34]. Using this heuristic, it needs at
most 22 floating-point multiplications® in the worst case, as
explained below:

First, the Rx needs four floating-point multiplications to
construct the kernel from the in-band and quadrature compo-
nents of the received signal (see Section V-C). Then, a clas-
sification between a pait of classes requires 3 multiplications.
Recall that there are a maximum of seven classes surrounding
the location of the received symbol on any constellation map,
and the rule in (12) requires the classes to be classified
in pairwise manner. Altogether, the online stage involves
3 x (7—1) + 4 = 22 floating-point multiplications.

Compared to other conventional classifiers, e.g., NNs and
decision trees, our SVM-based scheme enjoys lower com-
plexity and less sensitivity to parameter tuning, which lim-
its the performance of those other schemes. For example,
NNs are sensitive to the number of hidden layers and also
may involve trigonometric functions and other complicated
transfer function in their layers, which prevent a robust and
lightweight implementation. On the other hand, decision trees
use axis-aligned hyperplanes as their decision criteria, and so
they inherently require many branches to estimate nonlinear
boundaries. This requirement would increase the number of
tree branches for the tree at the online stage of Algorithm
1. In order to alleviate such weakness of decision trees, the
authors in [19] proposed a decision-tree-based algorithm that
not only is said to be resource-efficient, but also is capable
of approximating nonlinear decision boundaries and still keep
the tree-based structure. While the algorithm in [19] can be
tuned to have a performance comparable to the detection rule
in (11) (see Section VI-C), we show in [35, Appendix A] that
the computational and storage complexities of this algorithm
are higher than that of ours.

We would like to point out that a K-Nearest-Neighbours
(KNN) classifier is also not suitable for our problem. Specif-

8We do not consider the few number of floating-point additions in our al-
gorithm, as they impose negligible computations compared to multiplications.
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Fig. 12. BER performance vs. received SNR () for conventional (default) and CFO-aware boundaries.

ically, KNN requires the training set to be always present in
the detection phase, which imposes a high amount of storage
complexity. Also, it is not straightforward to tune the number
of nearest neighbors across all ¥’s and ¢’s.

VI. PERFORMANCE EVALUATION

We now evaluate the BER performance of our adaptive
demodulation scheme for different values of SNR ~ using
numerical analysis, LabVIEW simulations, and experiments
on a Universal Software Radio Peripheral (USRP) testbed. The
SNR values are selected from the range of SNRs at which
the BER without CFO is expected to perform well for most
of the applications, i.e., BER between 1073 and 10~°. The
time instance ¢ is set to 37 for the systems that employ a
symbol-by-symbol phase tracking mechanism as early as their
3rd symbol, and 87" and 127 for the systems that either do
not frequently track the phase (due to added complexity) or
cannot support such a mechanism (e.g., single-carrier systems
ZigBee, Bluetooth, etc.). We also vary the residual CFO oy
to measure the robustness of our enhanced TCM-aided MO
scheme as well as the uncoded modulation M; to phase error.
For brevity, we report these results in our technical report [35].

A. BER Gain Using CFO-Aware Demodulation

In this section, we numerically solve (11) to study the
maximum gain of our CFO-aware demodulation technique
when employed under 16-QAM and 64-QAM modulation
schemes. Specifically, we consider Zy(d7) and the noise n
on a subcarrier where J is calculated in each run following
the estimation of CFO using the 802.11 preamble (I = 64).
The results for (4 x 2) 8-APSK show negligible gain due to
its regular structure, and hence we do not show them here.

Fig. 12(a) compares the BER performance of 16-QAM
under default and CFO-aware demodulation boundaries. When
the frame duration is short (or a short time has passed since the
last preamble-based CFO correction instance), the immediate
gain is negligible. Such observation is inline with the intuition
that when the amount of phase offset is small at the beginning
of the payload transmission, the default demodulation bound-
aries have similar performance as the CFO-aware boundaries.
However, as the frame duration increases, the reduction in

BER achieved by using CFO-aware boundaries becomes more
pronounced. In particular, our adaptive demodulation tech-
nique achieves up to 3 dB performance gain at ¢t = 12T
and v > 20dB. This shows that even when payload noise
is low (SNR is high), the symbol rotation due to imperfect
CFO estimation can jeopardize the correct decision at the Rx.

Under the more compact 64-QAM constellation, the CFO-
aware regions are smaller than in 16-QAM and so can contain
fewer rotated symbols. Despite that, it can be seen in Fig. 12(b)
that the immediate gain of our adaptive demodulation tech-
nique at ¢ = 37 is about 0.05 dB, and it even reaches up to
2dB at time t = 12T and v > 22 dB.

B. BER Gain of Adaptive Demodulation in MO

Fig. 13 shows the BER improvement that our adaptive
demodulation achieves for M; — M, without TCM when
M; = BPSK or QPSK, and Mj; = 16-QAM. Again, we
consider Zy(d) and the noise n; on an OFDM subcarrier.
Although one might expect that M; = BPSK in MO should
not be particularly sensitive to residual CFO as much as
normal 16-QAM or 64-QAM, Fig. 13(a) shows a significant
BER loss in the absence of a CFO-aware demodulation. In this
case, our CFO-aware boundaries achieve a noticeable gain of
2.5dB at ¢t = 127. When M; = QPSK, our proposed scheme
achieves an immediate gain of 0.35dB at ¢ = 37 and up to
1dB gain when ¢t = 8 T'. If combined with the gain of our
proposed TCM in Section IV, one might expect an overall
gain of up to 3.29-5.5 dB when M, = BPSK and up to 1.79—
3.04 dB when M; = QPSK.

C. BER Performance of the Proposed SVM-based Scheme

We now numerically evaluate the accuracy of our SVM-
based detection scheme in achieving the maximum theoretical
gain (see above) by comparing its BER with the optimal
BER according to the rule (11). It can be seen in Fig. 14
for 16-QAM and 64-QAM modulation schemes that the BER
of the SVM-based scheme follows very closely that of the
numerically approximated boundaries (optimal rule in (11)),
signifying that the weights obtained through our SVM-based
scheme achieve high accuracy in implementing the scheme in
(11), but with much less computations than (11).
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Fig. 13. BER improvement versus SNR at the intended Rx when CFO-aware demodulation boundaries are employed under MO (M, = 16-QAM).
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Fig. 14. BER performance vs. received SNR () for optimal and SVM-based CFO-aware boundaries.

In Fig. 15, we compare the BER performance of our
algorithm, the tree-based scheme [19], and an artificial NN
that uses one hidden layer and different number of nodes
at the hidden layer. It can be seen that the NN scheme
cannot achieve a good and predictable performance using
small number of nodes in the hidden layer. Hence, the
computational complexity of a NN at the detection phase
would be inevitably high. Moreover, adding hidden layers did
not result in simultaneously reducing the number of nodes
and improving the BER performance. The method in [19],
although performs the same as ours, imposes a higher amount
of computational and storage complexity. Lastly, although the
training time is not a major issue, we observed that the training
time for the algorithm in [19] is also significantly higher than
that of ours. The reason is that the parameters of our algorithm
can be learned efficiently via solving a quadratic program,
whereas the parameters of the algorithm in [19] are learned
via a gradient descent method that eventually converges to a
local optimum of a non-convex optimization problem.

D. Simulations and USRP Experiments

In addition to the numerical analysis on the performance
of our SVM-based algorithm, we were able to implement this
adaptive algorithm, thanks to its low complexity, in LabVIEW
to simulate and then experimentally evaluate it on an NI-2922
USRP testbed. At the Tx side, we implemented the (legacy)
preamble and payload generation of an OFDM-based 802.11

(O BONSAI[19]
"~ £|———Proposed (SVM)

O ANN (10 nodes) A
—— ANN (5 nodes)
—o— ANN (2 nodes) \

5 10 15
7 (dB)
Fig. 15. Comparison of BER of 16-QAM for different algorithms (¢t = 87)).

system at 20 MHz bandwidth and set the payload modulation
scheme to 64-QAM. In this system, each OFDM symbol
consists of 48 data subcarriers. At the Rx and for processing
the received samples, we implemented the frame detection,
CFO estimation (using the method described in Section II),
and then channel estimation and equalization.

We compare the BER performance of the proposed adaptive
demodulation scheme and the conventional method, which is
unaware of CFO estimation errors. We assume steps of 3dB
for SNR v and 17 for time ¢ to train the SVM classifiers.
Because these classifiers depend on 7, we used the estimate of
the channel (obtained using the MMSE method) to calculate an
estimate of the noise and then ~. Investigating a more accurate
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Fig. 16. BER performance in simulations and USRP experiments under 64-QAM.

SNR estimation technique is beyond the scope of this paper,
however, we expect that reliability of our method will increase
with a more accurate SNR estimation scheme.

Assuming AWGN, simulation results in Fig. 16(a) show
how BER of the conventional scheme increases with time
(symbol number) since the last CFO estimation. One can
deduce from the figure that our method achieves more than
3dB gain even at the first few symbols in the presence of both
residual CFO and ICI as well as channel estimation errors.
In fact, the results indicate that by applying our SVM-based
CFO-aware demodulation, we can achieve a BER of 10~ or
less for the first four symbols (¢t < 47T) at v > 27 dB and
the first eight symbols (t < 8 T') at v > 30 dB. Please note
that this significant gain at the first few symbols is in part due
to the adaptability of our scheme to both CFO and channel
phasor estimation errors. We leave a more through analysis of
adaptive demodulation in the presence of channel estimation
errors for future work.

For the USRP experiments, we set the transmit power at
2dBm and used a pair of 8dBi antennas at a distance of
75 cm. Each OFDM frame is transmitted over 2.48 GHz carrier
frequency at 200 kHz bandwidth. Because the SNR at this
setup was very high (and hard to precisely estimate), we
added synthetic noise to the transmitted signal to lower the
actual SNR value to the range that our SNR estimation can
reasonably estimate it (i.e., < 28 dB range). In the legends of
Fig. 16(b) we report the SNR value we synthetically imposed
at the Tx before the (unknown) noise is added at the Rx.
This figure, after removing 0.2% of samples as outliers, shows
that our proposed lightweight SVM-based scheme significantly
outperforms the default (conventional) demodulation scheme
even in a real testbed settings with ICI and sometimes imper-
fect channel estimation.

VII. CONCLUSIONS

High-order modulation schemes are particularly sensitive to
CFO estimation errors, which may hinder employing high-
order modulation schemes in emerging systems and PHY-layer
modulation obfuscation security techniques. Conventional de-
modulators are not adaptive to the time-varying phase offset
induced by the residual CFO. In this paper, we derived the

expression for the probability distribution of received symbols
under imperfect CFO estimation and AWGN. For illustration
purposes, we considered QAM and APSK in OFDM systems,
and numerically determined their optimal modulation bound-
aries. Using a similar analysis, we customized our adaptive
demodulation technique for use in modulation obfuscation. We
further boosted the gain and robustness of modulation obfus-
cation by redesigning its coding scheme w.r.t. phase error. We
then developed a learning method based on support vector ma-
chine (SVM) to efficiently learn the numerically-approximated
optimal demodulation boundaries for lightweight symbol clas-
sification and fast detection. We showed that the modified
modulation obfuscation combined with the proposed adaptive
demodulation can achieve up to 5.5 dB performance gain. Our
system simulation and USRP experiment results confirm that,
using our SVM-based algorithm, we can significantly improve
the performance of QAM even beyond 3 dB gain for 64-QAM.
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